
DMBASIC 2.7 / CAN 2.5
Software of the SI2-CBB

1. Global description

1.1 Introduction
The SI2-CBB software is based on Olimex Duinomite hardware and DMBasic, including the basic
CAN extension by Frank Voorburg. SI-Kwadraat extended the system and made a specific CAN
firmware. It uses the open DMBasic version 2.7, which is open for every user. To make it fit, some
commands are removed and some others modified. To work with the CAN firmware a license has to
be installed. If no license is installed only the basic commands will work completely, the other CAN
commands will only work in a demo version. The license is determined per unit. If the license is
correct all functions are available, otherwise only available for demonstration.

1.2 DMBasic 2.7
DMBasic version 2.7 is the Duinomite version of MMBasic 2.7 by Geoff Graham. This was (and
still is) an open source version of MMBasic. In this manual we copied the used statements of this
Basic from the Duinomite manual:
https://www.olimex.com/Products/Duino/Duinomite/_resources/DuinoMite-UM-1-03.pdf
Some of the statements have been changed, extended or deleted by SI-Kwadraat. The copied
original text of the statements in the manual are written in normal font, the SI-Kwadraat added
issues in bold, the edited statements in italic. All statements beginning with CAN are developed by
SI-Kwadraat. Different from the original manual is the sorting of the statements. They are now split
into commands and functions and positioned in alphabetic order. Every line in DMBasic has to start
with a command. Also after a ‘:’ a new command has to be given. A line may start (also after a ‘:’)
with a variable name; in this case the LET command is presumed to be in front of the variable
name. Functions are in between commands, parameters and values.

1.3 Licensing of the SI2-CBB software
At initialisation a license file is opened and the reserved FIFO space and optional protocol are
determined. The license filename cannot be changed by the user; the buffersize (no. of FIFO’s) can
be changed. The original number of FIFO’s is 64. If this is the maximum which is needed, no extra
memory is reserved for the FIFO’s.
However if the value is greater (65 - 1024) a Basic array is created, CANMESSAGEFIFOAREA
with a dimension of 4 * No. of FIFO’s, eg at 1024: DIM CANMESSAGEFIFOAREA(4096). This
array is created at the first CANOPEN or CANFIFO statement in a program or in the command
shell. The use of the variable CANMESSAGEFIFOAREA is forbidden in Basic in this case.
When the second CANport is also used, the variable CANMESSAGEFIFOAREA2 is created and
cannot be used. This array always has the same dimension as CANMESSAGEFIFOAREA.

1.4 Some of the original DMBasic statements have been deleted in the CAN version:

● All Gameduino (GD) functions
● Help
● FSE (Full screen editor)
● One-wire functions
● The size of the “A” drive has been limited to 64 kbytes (was 128 kbytes)

https://www.olimex.com/Products/Duino/Duinomite/_resources/DuinoMite-UM-1-03.pdf

1.5 Overview of the DMBasic commands in alphabetic order:
Syntax: COMMAND parameter(s); parameters between [] are optional
Commands in standard letter type are original DMBasic commands; bold ones added in CAN
version and italic ones changed in CAN version.

1. AUTO [line number][,[increment]]
2. CANBRIDGE [[#]fileno]
3. CANCLOSE
4. CANFIFO [fifono][,rx/tx][,length]
5. CANFILTER [filterno][,std id][,ext id]
6. CANIDSCAN
7. CANINT [interruptcode[,lineno]]
8. CANIOLINK [pinno[,fifono[,timer[,startbit[,length]]]]]
9. CANLINK [filter no[,enable[,mask no[,fifo no]]]]
10. CANLOG [#fileno,][format[,fifono[,period[,lineno]]]]
11. CANMASK [maskno[,std mask[,ext mask]]]
12. CANOBJECT [#fileno,][fifono[,timer]]
13. CANOPEN [speed[,special[,ts resolution]]]
14. CANPHYS [parameter[,no]]
15. CANRCV [id][,type][,id_ext][,len][,data(),ok]
16. CANREG [regno]
17. CANREPLAY [#fileno,][fifono[,format]]]
18. CANRESET [canport]
19. CANRETURN
20. CANSCRIPT filename[, #fileno] or CANSCRIPT scriptpointer[,#fileno]
21. CANSEND [id][,type][,id ext][,len][,data(),ok]
22. CANSTATUS
23. CANSUB [timer][,lineno]
24. CANVIEW [format[,fifono[,period[,lineno[,interval]]]]]
25. CHDIR pathname$
26. CIRCLE(xcenter, ycenter), radius[,[color][,[F]]]
27. CLEAR
28. CLOSE #filenumber[,[#]filenumber]...] or CLOSE CONSOLE
29. CLS
30. COMLOG [#fileno,][format[,period]]
31. CONTINUE
32. COPYRIGHT
33. DATA constants
34. DATE$=v$
35. DELETE [line number1][-line number2] or DELETE line number1-
36. DIM variable(subscripts)[,variable(subscripts)]...
37. DO [loop statements] LOOP or DO WHILE expression [loop statements] LOOP or

DO [loop statements] LOOP UNTIL expression
38. DRIVE “A:” or DRIVE “B:”
39. EDIT [line-number]
40. ELSE in multiline IF … THEN … [ELSEIF …] ELSE … ENDIF
41. ELSEIF in multiline IF … THEN … ELSEIF … ELSE … ENDIF
42. END
43. ENDIF in multiline IF … THEN … [ELSEIF …] [ELSE …] ENDIF
44. ERASE list of array variables
45. ERROR error$
46. EVAL statement$
47. EXIT or EXIT FOR

48. FILES [search-pattern$]
49. FONT [#fontnumber, [scale, [reverse] or FONT LOAD filename$ AS #fontnumber

or FONT UNLOAD #fontnumber
50. FOR variable=x TO y [STEP z] [statements] NEXT [variable][,variable...]
51. GOSUB line number or GOSUB variable … RETURN
52. GOTO line number
53. I2CDIS
54. I2CEN speed, timeout [,interrupt-line]
55. I2CRCV address, bus-hold, rcv-len, rcv-buf [, snd-len, snd-data]
56. I2CSDIS
57. I2CSEN address, mask, option, send-int-line, rcv-int-line
58. I2CSEND address, option, snd-len, snd-data [,snd-data]
59. I2CSRCV rcv-len, rcv-buf, rcv-d
60. I2CSSEND snd-len, snd-data [,snd-data]
61. IF … THEN … or GOTO … [ELSEIF …] [ELSE …] [ENDIF]
62. INPUT [prompt string;] list of variables or INPUT [prompt string,] list of

variables or INPUT #filenumber, list of variables
63. IRETURN
64. KILL filename$
65. LET variable = expression (incl. special variable GRAPH_x = variable)
66. LINE [(x1,y1)]-(x2,y2) [,[color][,B[F]]
67. LINE INPUT [prompt$] [;] [,] string-variable or LINE INPUT #filenumber,

string-variable
68. LIST [linenumber][-linenumber] or LIST [linenumber-] or LIST #filenumber,

linenumber[-linenumber]
69. LOAD filename$ or LOAD # filename$
70. LOCATE X,Y
71. LOOP in DO [loop statements] LOOP or DO WHILE expression [loop statements]

LOOP or DO [loop statements] LOOP UNTIL expression
72. MEMORY [debug parameter]
73. MERGE filename$
74. MKDIR pathname$
75. MM.BLANK seconds
76. MSDOFF
77. MSDON
78. NAME oldfilename$ AS newfilename$
79. NEW
80. NEXT in FOR … TO … [STEP …] NEXT
81. NUM2BYTE number, array(x) or NUM2BYTE number, variable1, variable2,

variable3, variable4
82. OLED [options[,horizontal offset[,vertical offset]]] or OLED options_ext
83. ON expression GOTO linenumbers or ON expression GOSUB linenumbers
84. OPEN filename$ FOR mode AS [#]filenumber or OPEN

"COM[n]:[speed[,buf[,int[,lvl]]]][,mode][,FC] [,OC]" AS [#]filenumber or
OPEN "COM[n]:[speed[,buf[,int[,lvl]]]][,mode][,FC] [,OC]" AS CONSOLE or
OPEN "COM[n]:[speed[,buf[,int[,lvl]]]][,mode][,FC] [,OC]" AS REMOTE

85. OPTION BASE n or OPTION ERROR CONTINUE or OPTION ERROR ABORT or OPTION
CTRLC CONTINUE or OPTION CTRLC ABORT or OPTION PROMPT prompt$ or OPTION
Fnn string$ or OPTION VIDEO ON/OFF or OPTION USB ON/OFF/DISCONNECT

86. PAUSE number
87. PIN(n) = value
88. PIXEL (x,y) = value
89. POKE hiword,loword,byte
90. PRESET (x,y)
91. PRINT [#filenumber,][list of expressions][;,] or ? [#filenumber,][list of

expressions][;,]
92. PSET (x,y)
93. PWM [<pin>[,<period 1>[,<period 0>]]]

94. RANDOMIZE [expression] or RANDOMIZE TIMER
95. READ list of variables
96. REM[comment] or '[comment]
97. RENUMBER [first],[increment][,start]]
98. RESTORE
99. RETURN
100. RMDIR pathname$
101. RUN [linenumber] or RUN filename$
102. SAVE filename$ or SAVE # filename$
103. SAVEBMP filename$
104. SDDISABLE
105. SDENABLE
106. SDFORMAT
107. SETPIN pin-number, config or SETPIN pin-number, config, line-number
108. SETTICK period, line-number
109. SETUP
110. SLEEP [time]
111. SOFTRESET
112. SOUND freq, duration, duty
113. TIME$ string exp
114. TIMER = value
115. TROFF
116. TRON
117. WATCHDOG [timer]
118. WEND
119. WHILE expression [loop statements] WEND
120. WRITE [#filenum,] list-of-expressions
121. XMODEM SEND file$ or XMODEM RECEIVE file$

1.6 Overview of the DMBasic functions in alphabetic order
Syntax: FUNCTION; [] parameter is optional
Functions in standard letter type are original DMBasic functions; bold ones added in CAN version
and italic ones changed in CAN version.

1. -
2. *
3. /
4. \
5. ^
6. +
7. <
8. <=
9. <>
10. =
11. =<
12. =>
13. >
14. >=
15. ABS(n)
16. AND
17. AS
18. ASC(x$)
19. ATN(x)
20. BYTE2NUM(array(x)) or BYTE2NUM(byte1,byte2,byte3,byte4)
21. CANCLOCK
22. CANOBJECT
23. CHR$(x)
24. CINT(x)
25. COS(x)
26. CWD$
27. DATE$
28. DOW
29. ELSE
30. EOF([#]file-number)
31. EXP(x)
32. FIX(x)
33. FOR
34. FORMAT$(number, format$)
35. GETDIM(varname$)
36. GETPIN(x)
37. GOSUB line numbers
38. GOTO line number(s)
39. HEX$(x)
40. INKEY$
41. INPUT$(number, [#]file-number)
42. INSTR([n],x$,y$)
43. INT(n)
44. LCASE$(x$)
45. LEFT$(x$,n)
46. LEN(x$)
47. LOAD “fontfile” AS [#]n
48. LOADB “fontfile” AS [#]n
49. LOC([#]file-number)
50. LOF([#]file-number)
51. LOG(x)
52. MID$
53. MM.BLANK
54. MM.BOOTUP

55. MM.DRIVE
56. MM.DRIVE$
57. MM.ERRNO
58. MM.FNAME$
59. MM.HRES
60. MM.I2C
61. MM.SETUP
62. MM.SLEEP
63. MM.VER
64. MM.VRES
65. MOD
66. NOT
67. OCT$(x)
68. OR
69. PEEK(hiword,loword)
70. PIN(n)
71. PIXEL(x,y)
72. POS
73. RIGHT$(x$,n)
74. RND
75. SGN(x)
76. SIN(x)
77. SPACE$(x)
78. SPC(n)
79. SPI(rx, tx, clock[, data][,speed])
80. SQR(x)
81. STEP
82. STR$(n)
83. STRING$
84. TAB(n)
85. TAN(x)
86. THEN
87. TIME$
88. TIMER
89. TO
90. UCASE$(x$)
91. UNTIL
92. VAL
93. WHILE
94. XOR

1.7 Overview of the BASIC variables used in CAN commands and in SLEEP and OPEN.

BASIC VARIABLE DESCRIPTION USED IN COMMANDNO.

CANARRAY() Array for interaction basic-script 10,20

CANBLINK No of messages for blink green LED 10,

CANCONTINUE Way to continue after interval 10,

CANENDOFLINE End of line character(s) 10,

CANERRCNT Maximum value of Rx error counter 10,24

CANEVENTINT Timer for activating the script without message 20

CANFLOAT1 Basic variable used in script 10,20

CANFLOAT2 Basic variable used in script 10,20

CANFLOAT3 Basic variable used in script 10,20

CANI2CADDRESS I2C address for logging 10

CANID() CAN IDs 6

CANIDCHANGE0 ID change of bus 0 to bus 1 2

CANIDCHANGE1 ID change of bus 1 to bus 0 2

CANIDE() CAN ID extensions 6

CANIDNO No of found IDs 6

CANINTREG Interrupt register value 7

CANIOADDRESS Start address of CANIOARRAY 8

CANIOARRAY() Parameters of CANIOLINKs 8

CANIOCOMMAND$() Strings with commands to be executed 8

CANIOGAIN() Gain parameters 8

CANIONO No. of active CANIOLINKs 8

CANIOOFFSET() Offset parameters 8

CANLINENO No of lines (messages) to be evaluated 10,24

CANLOAD Overall busload 10,24

CANLOADACT Busload over last measurement period 10,24

CANLOADMAX Maximum busload during 1 period 10,24

CANLOADMAXTIME Time when maximum busload occured 10,24

CANLOADPERIOD() Busload per period 10,24

CANLOGARRAY() Array in which CAN messages are logged 10

CANLOGFIFO No. of FIFO’s active for logging 10

CANMESSAGEFIFOAREA() Reserved memory for CAN FIFO’s 18

CANMESSAGEFIFOAREA2() Same for the second CAN port, if available 18

CANMESSNO Total no. of messages 10,24

CANOBJCOUNTER Total no. of sent and received objects 12

CANOBJECTPERIOD Display update time for object view logging 10

CANOBJnnCTRL Control byte of object nn 12

CANOBJnnDATA() Array with databytes of object nn 12

CANOBJnnID ID of object nn 12

CANOBJnnOK Result of sending or receiving of object nn 12

CANOVFCNT Total no. of CAN overflows 10,24

CANPERIOD Duration of the active statement 10,24

CANPHYSADDRESS The start address of CANPHYSARRAY 14

CANPHYSARRAY() The array with the results of CANPHYS 14

CANPHYSOK The status of physical measurement 14

CANPOSTTRIGGER No. of messages after the trigger 10

CANPRETRIGGER No. of messages before the trigger 10

CANRXERRCNT Actual value of Rx Errorcounter 10,24

CANSCRIPTPTR Pointer to CANSCRIPT 20

CANTEST() Array with data of several commands 4,5,9,11,12,16,22,24

CANTIME Measurement time of command 10,24

CANTRIGGERERRCNT Value of Rx Errorcounter for trigger 10

CANTRIGGEREXTID ID extension for trigger 10

CANTRIGGERID ID for trigger 10

CANTRIGGERPIN PIN for trigger 10

CANTRIGGERVALUE Value of PIN for trigger 10

CANTSCORRECTION Mode of timestamp correction 10

CANTXERRCNT Actual value of Tx Errorcounter 10,24

CIV Variable used in COMMAND$ 8

RXDATA() Default variable data array 15

RXDLC Default variable DLC 15

RXID Default variable ID 15

RXIDE Default variable ID extension 15

RXOK Default variable status 15

RXTYPE Default variable type 15

TXDATA Default variable data array 21

TXOK Default variable status 21

WAKEUP_COM Activate wakeup from COM port 110

WAKEUP_KB Activate wakeup from keyboard 110

WAKEUP_PIN0 Activate wakeup from PIN 0 110

WAKEUP_PIN5 Activate wakeup from PIN 5 110

WAKEUP_PIN6 Activate wakeup from PIN 6 110

WAKEUP_PIN7 Activate wakeup from PIN 7 110

COM_PARITY_REPLACE Replace character if parity error 84

COM_PARITY_ERRORS Counter of parity errors 84

COM_BIT9_ADDRESS The active address in 9-bit communication 84

COM_BIT9_VALUE The value of the ninth bit 84

REMOTE_PARAM$ Parameter string for SI2-ESP 84

REMOTE_PARAM_2$ Optional extra parameter string 84

2. The DMBasic commands

2.1 AUTO

Purpose:
To generate and increment line numbers automatically each time you press the ENTER key.

Syntax:
AUTO [line number][,[increment]]

Comments:

AUTO is useful for program entry because it makes typing line numbers unnecessary.

AUTO begins numbering at line number and increments each subsequent line number by
increment. The default for both values is 10.

If line number is not followed by a comma, and increment is not specified, the last
increment specified in an AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk appears after the
number to warn that any input will replace the existing line. However, pressing ENTER
immediately after the asterisk saves the line and generates the next line number.

AUTO is terminated by entering CTRL-BREAK or CTRL-C.

Note
The line in which CTRL-BREAK or CTRL-C is entered is not saved. To be sure that you save all
desired text, use CTRL-BREAK and CTRL-C only on lines by themselves.

Examples:

AUTO 100, 50
Generates line numbers 100, 150, 200, and so on.

AUTO
Generates line numbers 10, 20, 30, 40, and so on.

2.2 CANBRIDGE

Purpose:
Copy messages of one CANbus to the other

Syntax:
CANBRIDGE [[#]fileno]

Comments:

CANBRIDGE activated after following sequence of commands:

- CANRESET, CANRESET 0 or CANRESET 1 (setting the first CAN port)
- Optional: CANFIFO (FIFO 0 should be configured for Tx, FIFO 1 for Rx)
- Optional: CANFILTER/CANMASK/CANLINK (enable filters on the 1st CAN port)
- CANOPEN bitrate (start first CAN port)
- CANRESET 2 (switch to the other CAN port)
- Optional: CANFIFO (FIFO 0 should be configured for Tx, FIFO 1 for Rx)
- Optional: CANFILTER/CANMASK/CANLINK (enable filters on the 2nd CAN port)
- CANOPEN bitrate (start second CAN port)

CANBRIDGE can now be started and all messages on CAN port 0 will be copied to CAN port 1
and vice versa. Of course when filters are active, these filters decide which messages are
actually copied.

If the optional <fileno> is included in the command, logging is done in the UNICANNER
format (format 2 in CANLOG). 0 or #0 will do a screen logging 1 (#1) up to 9 (#9) file logging
to the file which is opened for input by this number.

The Basic variables CANPERIOD, CANLINENO, CANCONTINUE, CANENDOFLINE and
CANBLINK can be used as in CANLOG. Also <ESC> or <CTRL-C> can be used to stop the
CANBRIDGE command.

The Basic variables CANIDCHANGE0 and CANIDCHANGE1 can be used to increment or
decrement the ID. First one changes the ID from bus 0 to bus 1, the second one from 1 to 0.
Only small changes from -127 to +127 are possible. In the std ID these are the 7 LSBs; in the
ext. ID bits 24 - 18.

Example:

10 CANRESET:CANOPEN 500:CANMASK 0,&H7FF
20 CANFILTER 1,500:CANLINK 1,1,0,1:CANOPEN 500
30 CANRESET 2:CANOPEN 250:CANMASK 0,&H7FF
40 CANFILTER 1,400:CANLINK 1,1,0,1:CANOPEN 250
50 CANBRIDGE

The messages with ID 500 on the first CANbus with bitrate 500 kb/sec are copied to the
second bus with bitrate 250 kb/sec. Also messages with ID 400 on the second bus are copied to
the first one.

2.3 CANCLOSE

Purpose:
Close the active CAN port

Syntax:
CANCLOSE

Comments:

CANLOSE has no additional features. It sets the active CAN port to configuration mode.

If active objects of CANOBJECT are running in the background, they will be stopped by
CANCLOSE.

Example:

100 CANOPEN 500
110 DIM CANOBJ00DATA(10):CANOBJ00ID=100:CANOBJ00CTRL=0
120 CANOBJECT 0,1000
130 PAUSE 10000
140 CANCLOSE

CANBUS will be opened at 500 kb/sec. A message with ID 100 (no data) is sent every second
and automatically stopped after 10 seconds.

2.4 CANFIFO

Purpose:
Change the FIFO configuration of the active CANport..

Syntax:
CANFIFO [fifono[,mode[,depth]]]

Comments:

CANFIFO without further parameters will give the status of all 32 FIFO’s.

If DIM CANTEST(31) has been executed before CANFIFO every CANTEST(x) has the
status of CANFIFO x. The status value consists of:

depth + (64 * type) + (256 *act) + (16384 * stat) + (32768 * ovl), where
depth = no. of locations; type = 0 for rx; 1 for tx; act(ive) = 1 for every tx and for
linked rx; 0 for unlinked rx; stat = status bit; ovl = overload bit.

Default the FIFO 0 is configured for Tx (length 2) and FIFO 1 for Rx (32) by CANOPEN. All
other FIFO's are default for Rx with depth 1.

CANFIFO gives the opportunity to change any FIFO to a mode (0 for rx; 1 for tx) with any
depth (1-32). If CANFIFO is entered with only the fifono, the FIFO is set to rx and
depth 1. If it is entered without the depth parameter, depth will be set to 1.

Please keep in mind that the available space will be limited by the buffers in the license file.
Changing CANFIFO will reset all linking of the filters.

Examples:

 CANFIFO:’an overview of all 32 FIFO’s is displayed

CANFIFO 0,1,4:’FIFO 0 is set for Tx, 4 messages deep

CANFIFO 1,0,32:’FIFO 1 is set for Rx, 32 messages deep

2.5 CANFILTER

Purpose:
Configure the filters, which are used to filter the received messages.

Syntax:
CANFILTER [filterno[,std id[,ext id]]]

Comments:

CANFILTER with no parameters will show the status of all filters.

If DIM CANTEST(63) has been executed before CANFILTER the values of CANTEST
are as following:

CANTEST(2*x) = standard value of CANFILTER x
CANTEST((2*x)+1) = extended value of CANFILTER x

However:

If standard value<2048 and no extended value:
CANTEST((2*x)+1) = 999999

If standard value>2047 (filtering on databytes)
CANTEST((2*x)+1) = extended value + 100000

CANFILTER with only filterno sets both std and ext id to 0.

CANFILTER with filterno and std id sets the standard part to the id.

CANFILTER with filterno , std id and ext id sets the complete id and optionally
some databytes. If used as extended ID filtering, std id will contain the 11 MSBs and ext
id the 18 LSBs. Filtering on databytes is only possible on standard IDs:

CANFILTER [filterno(0-31)][,std id(0-2047)][,extd id(0-262143)]: std or ext ID only

CANFILTER [filterno(0-31)][,std id(2048-4095)][,DB1(0-255)]: std ID & 2047+DB1

CANFILTER [filterno(0-31)][,std id(4096-6143)][,DB2(0-255)]: std ID & 2047+DB2

CANFILTER [filterno(0-31)][,std id(6144-8191)][,DB1-2(0-65535]: std ID & 2047+DB1-2

CANFILTER [filterno(0-31)][,std id(8192-10239)][,DB3(0-255)]: std ID & 2047+DB3

CANFILTER [filterno(0-31)][,std id(10240-12287)][,DB2-3(0-65535)]: std ID & 2047+DB2-3

CANFILTER [filterno(0-31)][,std id(12288-14335)][,DB4(0-255)]: std ID & 2047+DB4

CANFILTER [filterno(0-31)][,std id(14336-16383)][,DB3-4(0-65535]: std ID & 2047+DB3-4

Examples:

CANFILTER:’an overview of all 32 filters

CANFILTER 0,100:’Filter 0 set to 100 standard ID

CANFILTER 0,&HFFFFFF:’Filter 0 set to 0xFFFFFF

CANFILTER 0,&H3F,&H3FFFF;’The same split in std and ext

CANFILTER 0,2148,100:’Filter 0 set to ID 100; DB1 100

CANFILTER 0,6244,25700:’The same + DB2 100

2.6 CANIDSCAN

Purpose:
Scan all the IDs on a network

Syntax:
CANIDSCAN

Comments:

To use this command the array CANID(n) has to be defined. The dimension has to be
minimal as large as the number of IDs, otherwise the additional IDs will be lost. If only
CANID has been defined, both standard as well as extended IDs are written in this array. If
the extended ID is larger than 1.000.000 errors will occur due to the fact that the float in Basic
is rounded. Therefore also an array CANIDE(n) can be dimensioned, which will contain the
18 LSB’s of the extended ID. CANID(n) will contain the 11 MSB’s in this case. All cells in
the arrays which are not used will have the value of -1, so also CANIDE(x) at a standard ID.

As soon as CANIDSCAN is started it will look for unique IDs on the network. The number of
IDs is displayed on the screen. If this is not wanted, one can dimension the CANTEST variable
as an array. Only CANTEST(0) is used and will contain the number of IDs. If the variable
CANIDNO is dimensioned the number of IDs is available in this variable.

The measurement is ended by <ESC> or after the number of ms defined in the Basic variable
CANPERIOD if defined.

By default the command will display the number of IDs on the screen with a standard interval
(1000 ms by default), which can be changed by CANSUB.

Example:

10 DIM CANID(10),CANIDE(10)
20 CANPERIOD=10000
30 CANIDSCAN
40 FOR x=0 TO 5:PRINT CANID(x);CANIDE(x);:NEXT
RUN
Found IDs: 3
 100-1 200-1 100 1-1-1-1-1-1-1

During 10 seconds 3 different ID’s are detected on the bus: the standard IDs 100 and 200 and
the extended ID 262244

2.7 CANINT

Purpose:
Jump to a Basic subroutine if an interrupt occurs

Syntax:
CANINT [interruptcode[,lineno]]

Comments:

As Basic is an interpreter (or scripting) language, we normally don’t use direct processor
interrupts. The CAN controllers have an interrupt register. Normally we handle the interrupt
in the specific CAN statements. With CANINT it is possible to handle it at a more low level.

A CAN interrupt can occur on 9 different events in the controller. Each event can be enabled
or disabled. Normally they are all disabled. The controller has a 16 bit word to control them
(7 bits not used). The parameter interruptcode is a direct entry for the enable/disable
word. It is ordered:
<IWBSONNNNNNNMCRT> where:
I = Invalid Message Received
W = Wakeup
B = Bus error
S = System error
O = Overflow error
N = Not used
M = Mode changed
C = CANclock overrun
R = Receive Message
T = Transmit Message

Setting the bit to <1> means enable, <0> disable. For more info concerning the interrupts we
advise to read the section 34 (CAN section) of the Microchip PIC32 manual.
The Transmit, Receive and Overflow Interrupts find their sources in the specific FIFO
interrupts and are quite difficult to be used in Basic. Therefore they are not used up to now.

The remaining 6 interrupts can be coded in the interrupt code and if also a lineno is filled
in, the program jumps to the specified lineno if an interrupt occurs. To return to the main
program one has to use the CANRETURN statement at the end of the subroutine.

Example:

100 CANOPEN 500
110 CANINT &H2000,200:’Interrupt on bus error
120 GOTO 120
200 PRINT “Bus error detected after”;TIMER;” msec.”
210 CANRETURN

2.8 CANIOLINK

Purpose:
Link I/O pins directly to incoming or outgoing CAN messages

Syntax:
CANIOLINK [pinno[,fifono[,timer[,startbit[,length]]]]]

Comments:

CANIOLINK gives the user the possibility to measure and control the I/O pins and enter the
data directly into the CANOBJECT data. In fact it is possible now to configure the
CANOBJECTs and the CANIOLINKs in a program or from the prompt and after the
configuration the CAN messages are updated with the inputs and the outputs are controlled
by the CAN messages.

Like the CANOBJECTs the CANIOLINKs are executed in the 1 ms timer interrupt routine.
Up to 128 CANIOLINKs can be defined. To prevent timing problems it is decided that during
every interrupt routine only one CANIOLINK is controlled. In this way the CANIOLINK is
checked every ms if only one is declared and every CANIOLINK is checked every 0.1 sec if
100 are declared. Multiple I/O’s can be linked to a CANOBJECT and also an I/O can be
linked to multiple CANOBJECTs.

The variables are defined as follows:
pinno is the number of the PIN (or I/O line). 0 the BUTTON (PIN 0 as output, the green
LED is disabled), 1- 6 the analogue inputs, 7 - 10 the special I/O lines, 11 - 18 standard digital
I/O, 19 - 21 specials.

fifono is the used FIFO, which is identical to the CANOBJECT no. The CANOBJECT has
to be made active before the CANIOLINK can be made to it.

timer is the minimal time interval for checking the specific CANIOLINK. The actual
interval can be longer if more than one CANIOLINKs are defined. If timer is 0, a special
routine is called. Now either the value of the PIN if it is a Tx CANOBJECT or the value of the
relevant Rx CANOBJECT data is compared with the previous value. If it is changed the Tx
CANOBJECT is sent immediately or the output is updated immediately after the Rx
CANOBJECT. It has become a so-called Change Of State issue instead of a timed one.

startbit is the bit in the CANOBJECT data where the value of CANIOLINK starts. It can
be any number from 0 to 63 (8 databytes). We do it per bit, so that we can place more than
one PIN value into a CAN databyte. In case of analogue inputs or PWM outputs it is the place
of the LSB. If the length (next parameter) is 1, the startbit can have every value. In all other
cases it will be corrected to a byte, word or long word value.

length is the length of the data. It can have the values 0, 1, 8, 16 or 32. All other values
between 0 and 63 will be corrected to one of those values. The values 8, 16 and 32 mean 1, 2 or
4 databytes are involved in the action. 1 means only the specified startbit is influenced. 0 has a
special meaning: the value is interpreted as a float value. This means 4 bytes are involved.

To use the CANIOLINK the array CANIOARRAY should be dimensioned. Every link needs
4 entries, so for 1 CANIOLINK the minimum is DIM CANIOARRAY(4), for 2 DIM
CANIOARRAY(8), etc. CANIOARRAY(0) - CANIOARRAY(3) are used for CANIOLINK
0, CANIOARRAY(4) - CANIOARRAY(7) for CANIOLINK 1, etc. The first 3 parameters
are floating numbers and can be read (or even written) also from the Basic program. The 4th
one is a combination of the parameters of pinno, OBJECTno (fifono), startbit and
length. The value of the timer is in the 3rd parameter, so PRINT CANIOARRAY(2) will
print the value of the timer of CANIOLINK 0. PRINT CANIOARRAY(0) will print the
actual value of the chosen PIN. PRINT CANIOARRAY(1) depends on the timer; if timer
is 0 it will print the previous value of the PIN (this is the way the Change Of State is detected);
if the timer > 0 it will print the actual value of the ms counter, which will be reset to 0 if the
value reached the timer value.

To make it possible to read back also the values of the 4th parameter (pinno,
fifono,start,length) a Basic variable CANIOADDRESS can be declared. If this is done
the variable gets the two low bytes of the start value of the CANIOARRAY in memory. By
using PEEK it can be read, e.g.:
pinno_0=PEEK(&HA001,CANIOADDRESS+12):objno_0=PEEK(&HA001,CANIOADDR
ESS+13):start_0=PEEK(&HA001,CANIOADDRESS+14):length_0=PEEK(&HA001,
CANIOADDRESS+15)

Every next CANIOLINK is situated 16 bytes further.
If the Basic variable CANIONO is declared, it contains the number of active CANIOLINKs.
If one or more CANIOLINKs are defined they are listed in CANSTATUS with all their
parameters. They get a LINK-number in the order they have been entered. Normally the
configuration of the links is done only once, but it is possible to change a configuration
dynamically. This is done by deleting CANIOLINKs and entering new ones. For deleting the
commands CANIOLINK 100 up to CANIOLINK 227 can be used. The number has to be
subtracted by 100 to get the LINK-number which has to be deleted. In this way CANIOLINKs
can be deleted one by one. The list is always cleaned up after every delete action.

Two additional Basic arrays can be dimensioned: CANIOOFFSET and CANIOGAIN. If they
are used they can have a dimension which is lower than the number of CANIOLINKs. If they
are defined the actual value for the CANOBJECT data = (PIN(x) -
CANIOOFFSET(x)) * CANIOGAIN(x) or the actual value of PIN(x) =
(CANOBJECTdata(x) - CANIOOFFSET(x)) * CANIOGAIN(x). The default value of
CANIOOFFSET(x) is 0 and of CANIOGAIN(x) is 1. In general these parameters will only
be useful for analogue signals. The dimensions of these arrays may be lower than the number
of CANIOLINKs. One has to take care to use the first CANIOLINKs with the offset, cq gain
in this case.

Also one Basic string array can be dimensioned: CANIOCOMMAND$. If this is done and the
actual string is not empty, the optional CANIOOFFSET and CANIOGAIN parameters are
ignored for that particular CANIOLINK. One has to be very careful using this array. In the
first place every string will occupy 256 bytes of the array memory. In the second place it is not
easy to fill these strings. It should be filled with a translated Basic command. How to translate
a standard Basic command into a so-called tokenized is described in the EVAL command. If
the string is built as: CHR$(129)+”CIV”+CHR$(186)+.....(LET CIV=....) then
the value of CIV is used in the calculation of the result in either the CANOBJECT data or
the IO value. Only one command can be used in a string, so no multiple commands using a
“:”. Commands in the CANIOCOMMAND$() will not be executed if a Basic program is
running. Also executing direct Basic statements from the prompt when CANIOLINKs with
CANIOCOMMAND$()s can give conflicts. If multiple commands are defined and would overlap
in timing, the one first started will be executed and the new one ignored. So one should be
careful in placing the CANIOLINKs in the right timing.

If the Basic parameters are dimensioned for the CANOBJECT (e.g. DIM
CANOBJxxDATA(10)) this parameter will be updated during the CANIOLINK operation.
This will always work correctly independent of the size of the FIFOs. This is not the case if
this is not done. In that case the pointer to the specific FIFO will always be to the actual
location, however if a new CANOBJECT is sent or received the location is incremented. If the
size of the FIFO > 1 the data will be really actualised after a number of messages equal to the
size of the FIFO. That is why it is advised to use only FIFO’s of 1 message deep, if the Basic
object data is not used. The advantages of not using the Basic object data is the speed (data is
directly copied into the FIFO’s) and more memory is left available in RAM. So for a relatively
low number of CANIOLINKs it is better to use the Basic object data and for a high number
the system performance will be better without them.

Example:

 10 CANOPEN 500

20 DIM CANOBJ00DATA(10):CANOBJ00ID=100:CANOBJ00CTRL=1
30 DIM CANIOARRAY(4):’enugh for one CANIOLINK
40 CANOBJECT 0,1000
50 CANIOLINK 0,0,500,0,1
RUN
>

The program will execute the lines 10-50 and stop after that. However the started
CANOBJECT and CANIOLINK will continue. They will generate a CAN message every
second, with ID 100 and 1 databyte with the value of the USER button. It will stop after
CTRL-C.

2.9 CANLINK

Purpose:
Link one of the CAN filters to a mask and a FIFO.

Syntax:
CANLINK [filter no[,enable[,maskno[,fifono]]]]

Comments:

CANLINK with no parameters will show all links.

If DIM CANTEST(31) has been executed before CANLINK the status will be in this array
and can be used in a Basic program. The value is:

 CANTEST(x) = fifono + (32 * maskno) + (256 * enable)

CANLINK with only the filter no disables the filter, no change in mask and FIFO

CANLINK with filter no and enable will enable (1) or disable(0) the link.

CANLINK with filter no, enable and maskno will also set the mask

CANLINK with filter, enable, maskno and fifono sets the complete link,
including FIFO.

A filter can only be linked to one FIFO; a FIFO however can be linked to more than one filter.
Before a new link can be made the former link has to be disabled.

Examples:

 CANLINK:’Show all 32 links

CANLINK 1,1,0,1:’Link filter 1 to FIFO 1, using MASK 0

CANLINK 1,0,0,1:’Unlink (disable) it again

2.10 CANLOG

Purpose:
Analysis of a bus system. It can show the data on a screen/USB terminal as well as write it to
a file or local RAM memory or direct to I2C.

Syntax:
CANLOG [#fileno][,format[,fifono[,period[,lineno]]]]

Comments:

All parameters are optional. If a parameter is to be used, all previous parameters should be
filled in too.

● #fileno: Fileno has to be used as in PRINT #.
● format: Data format, with selection of trace/object view and optional protocols
● fifono: 0 -31; default value: FIFO 1
● period: The measurement time in ms.
● lineno: The number of CAN messages to be logged.

CANLOG can be stopped in five ways:

● CTRL-C: When used on the command line this will come back to the basic prompt.
● ESC does the same as CTRL-C, however this can be used within a BASIC program.
● Keys <P>ause, <Q>uit and <R>esume, described below at CANCONTINUE.
● period: When period is given (>0), it will stop after this period time in ms.
● lineno: When lineno is given, it will stop after the no of messages.

A combination of period and lineno is possible. It will stop on the event which comes
first. If only lineno is used, period should be set to 0. See also the variables
CANPERIOD and CANLINENO. If period or lineno are used <ESC> is disabled.

The fileno operates in the following way:
#0: (default) screen/USB
#1 or #2: file or serial port opened on this port
#4: same as #0
#5: #0+#1
#6: #0+#2
#7: #0+#1+#2
#8: log to RAM area defined by the basic variable CANLOGARRAY (Array should be
dimensioned before, e.g. DIM CANLOGARRAY(4096)
#9: log to I2C, configured as master, with slave destination 0x60 (this address can be changed
by basic variable CANI2CADDRESS)
higher than 9 forbidden

The formats from 0 to 31 are the trace formats:
0 -7: The standard trace formats
8 - 15: As 0 - 7 however only registration during pressing of USER button
16 - 23: As 0 - 7 however triggered by SPACE key or USER button
24 - 31: As 0 - 7 however, triggered by a CANbus error or a pre-defined ID

If the triggered formats are used, the BASIC variables CANPRETRIGGER and
CANPOSTTRIGGER can be used to determine the number of messages before and after the
trigger moment, which are included in the log. If CANPRETRIGGER is not defined it is
supposed to be 0 and if CANPOSTTRIGGER is not defined the log will continue until it is
stopped by one of the other methods. The maximum value of pre-triggered messages is the
depth of the buffer which is used for logging. We have two possible buffers. If CANLOGARRAY
has not been declared, it will be FIFO which is used. The maximum number of pre-trigger
messages will be 31 in this case (FIFO depth=32). If CANLOGARRAY has been declared this
array will be used for buffering. The maximum number of pre-trigger messages will be the
dimension divided by 4. So DIM CANLOGARRAY(4096) means up to 1024 pre-trigger
messages. The dimension must be a fourfold value (4, 8, 12, 16, etc.), otherwise the messages
will be read in a wrong way. Of course we cannot use #8 as fileno in this case. The
pre-triggered messages are displayed or logged after the post-triggered messages.

If the formats 24-31 are used also an optional variable CANTRIGGERERRCNT is available,
which has the value or the Rx error counter when the trigger occurs (1 by default).
CANTRIGGERID and CANTRIGGEREXTID (for extended IDs) can be used to determine the
ID to trigger on rx ID.

By default PIN(0) (The USER button on the basic hardware) is used as an external trigger
switch. This can be modified by the variables CANTRIGGERPIN and CANTRIGGERVALUE.
CANTRIGGERPIN can be any of the 6 analog inputs (PIN 1-6) or any of the 8 digital I/O’s
(PIN 11-18). If CANTRIGGERPIN has got another value it is reset to 0. The variable
CANTRIGGERVALUE indicates the trigger value. For digital I/O’s this is by default 0; if any
other input is set, it will be 1. For analog inputs CANTRIGGERVALUE means the value of the
analog input in Volts (0 - 3.3 Volt). The CANTRIGGERPIN is only active if the I/O line is set
to digital input (SETPIN x,2) or analog input (SETPIN x,1).

The existing trace formats are:

● 0. The Basic Microchip format (16 byte per message HEX)
● 1. Blank; format if only busload and/or error messaging are of interest
● 2. The UNICANNER format including error information.
● 3. The UNICANNER error only format
● 4. The HEX string format
● 5. The DEC string format
● 6. The ASCII string format
● 7. The Custom protocol format

If format is greater than 31 the object format is chosen. The format can now be divided as
follows:
<dddddddd><r><e><f><c><ppp><s>
In the object view the upper free FIFO space is used for storage of the objects. In the small
object size one FIFO location (16 bytes) is used per object. In the large object size two FIFO
locations (32 bytes). In the small object view only ID, CTRL byte, databytes and no of
messages are displayed. In the large object view we see in addition the last timestamp, the first
timestamp, the last interval, the smallest interval and the largest interval..

<s>: The size of the object; 0 means the default large; 1 the small size
<ppp>: The protocol for data:
 000: Hex ID only 001: Blank
 010: Unicanner 011: Dec ID only
 100: Hex string 101: Dec string
 110: ASCII string 111: Custom protocol
<c>: If 1 and custom protocol is available an extra protocol line is included
<f>: The switch between trace and object format; must be 1 for object.
<dddddddd><r><e>:

 Used for optional object specification; by id, but also by data, RTR and
IDE. The first d is the first databyte D1; the last is D8. r and e: RTR/IDE.
Default they are all 0 , which means only ID object definition.

CANLOG has a timestamp on every received CAN message. The timestamp from the CAN
module of the PIC32 controller is used. The default resolution is 100 uS, which can be
changed by CANOPEN. As this is a 16 bit number, after about 6.5 sec it will start over again.
In the software this is compensated: if timestamp < prev timestamp then add 65536. This
works only if messages are seen in every period of 6.5 sec. Gaps in time are corrected by the
CANclock. The Basic variable CANTSCORRECTION can be used to control this. If not
defined, the default value (3) will be used, meaning both corrections will be included. If set to
0 no corrections will be made; 1 only the correction in “if timestamp<prev timestamp” is
made; 2 only the correction in CANCLOCK is available, which is checked every 1 ms
(timestamp can be wrong if more than one message come within 1 ms).

To show activity on the bus during CANLOG, the application LED can be used for blinking. If
the variable CANBLINK has a value >0 the USER LED will toggle between ON and OFF at
the number of messages which is given to CANBLINK.

If at least one of the basic variables CANLOAD or CANLOADMAX is defined, a busload
measurement is done during CANLOG. CANLOAD contains the overall busload in % and
CANLOADMAX the maximum busload during 1 period. If also the variable CANLOADMAXTIME
is defined, this variable contains the second when the maximum busload occured. Also the
variable CANLOADACT is available. This specifies the actual busload over the last
measurement period.
The array variable CANLOADPERIOD(n) can be used for the actual busload in a period
(default 1 sec, but can be changed by CANSUB). The number of values is dependent on n in
DIM CANLOADPERIOD(n).

CANCONTINUE can be used as following:
CANCONTINUE=0 or CANCONTINUE>3: Every time CANLOG is called the message number
and the timestamp are reset. Also the complete command line is interpreted again, so you can
change all parameters. If CANCONTINUE is not defined you can use <ESC> or <Q>.
CANCONTINUE=1: If CANLOG is called again after the first time, the command is not
interpreted again and message number and timestamp are not reset, but incremented from
the values of the previous run. Only CTRL-C will stop CANLOG in this situation.
CANCONTINUE=2: The command is not interpreted again and continued with the parameters
from the previous run. If CANCONTINUE not defined <P> will do the same. In fact by using
CANSUB also this situation will be entered, only now you don’t have to call CANLOG again.
CANCONTINUE=3: If CANLOG is called again after the first time, message number and
timestamp are not reset, but incremented from the values of the previous run. However the
command is interpreted again and can be called with different parameters. If CANCONTINUE
not defined <R> will do the same.

CANPERIOD and CANLINENO can be used instead of the same parameters in the command.
CANTIME and CANMESSNO can be used to read out the actual measuring period in ms and
the actual number of lines at the end of the CANLOG. If the <period> and/or <lineno>
parameters in the command are used, they will overrule the CANPERIOD and CANLINENO
variables.

If CANERRCNT and CANOVFCNT are defined they contain resp. the maximum value of the
CAN RX error counter and the value of the number of buffer overflows which occured.
Every detection of a buffer overflow is indicated by a missing line number. This is very useful
when interrupted logs are made.

If CANENDOFLINE is not defined or zero, every line in the CANLOG trace is ended by
CRLF. If CANENDOFLINE=1 the line is only ended by CR, which gives an overlay for every
line on the screen. If CANENDOFLINE=2 the line is ended by 2 spaces. If CANENDOFLINE=3
no characters at all are placed at the end of the line. This parameter can be very useful if the
custom protocol is used.

The variable CANEVENTINT can be used to set an event bit, which can be used in the custom
protocol.

By default the script included in the license file is used for the custom protocol translation. We
have the availability to use multiple scripts, which are described in the SCRIPT statement. If
the scripts are small (< 4kb) and the other user programs are stored on the B-drive maximal
16 scripts fit on the A-drive. These scripts can also be custom protocol files. To change the
custom protocol two actions have to be done:

1. DIM CANSCRIPTPTR : REM this variable will get a number 0 - 15
2. CANSCRIPT “PROTFILE.MSC”:REM this will run this file once, set

CANSCRIPTPTR and set the protocol to the correct entry.
Now CANLOG 7 will show the CANdata as defined in the file PROTFILE.MSC. In this way
we can simply change the format in one program to CANopen, J1939 or any other protocol.

If a CANLOG has to be done continuously, but in between also other tasks, either using
CANSUB/CANRETURN or by doing bursts of CANLOG’s, it is possible that the maximum of 32
messages in one FIFO is not enough for storage. The PIC32 has the possibility to store
messages into a maximum of 32 FIFO’s. However in the CANLOG statement the FIFO to be
used has to be specified. This has to be linked to a filter and a mask. By default the Filter 1 is
used, linked to the Mask 0 and FIFO 1. By linking the next filter, having the same value as the
previous one, to the same mask and the next FIFO (CANLINK 2,1,0,2) the FIFO area is
automatically extended with this FIFO. The same is true for every next Filter/FIFO
combination. In this way it is in principle possible to use up to 32*32 = 1024 messages deep
FIFO. The extended FIFO’s are detected at the first execution of CANLOG if the linking
matches the description above and all the filters have the same value. After this execution the
Basic variable CANLOGFIFO has the number of FIFO’s, which are active for this CANLOG.
This extended FIFO option cannot be used for pre-trigger messages. Use CANLOGARRAY for
this feature as described before.

The Timestamp correction in the multiple FIFO configuration is done in a slightly different
way as described before. For a single FIFO application it is not easy to detect which messages
belong to the first CANLOG and which to the second. That is why all messages are corrected
with the timestamp (calculated by CANCLOCK) of the second run. In principle this is wrong,
because probably there were still messages of the first run in the FIFO. If we have lost
messages, this is indicated with a missing message no. at the start and not the place where the
messages are lost. If we use multiple FIFO’s we skip the correction with the CANCLOCK (so
no correction if a gap of 6.5 sec occurs). This means if we start the second CANLOG we still
use the corrected timestamp of the first run. Now all the old messages available in the FIFO’s
are read with corrected timestamp from the first run and when we come at the end of all
FIFO’s we compensate with the CANCLOCK and eventually skip a messageno at the right
place.

Examples:

CANLOG 4:’Log CAN messages on screen in the HEX format

CANLOG #1,7:’Log in file #1 in the custom format

CANPRETRIGGER=10:CANPOSTTRIGER=20:CANLOG 20
‘Screen log in HEX format; triggered by USER switch or SPACE;
10 messages before trigger and 20 messages after trigger

CANLOG 28:’Log in object format; For every ID you get the
number of occurrences, first and last timestamp and intervals

See also example in CANSUB.

2.11 CANMASK

Purpose:
Configure the masks which are used to filter the received messages.

Syntax:
CANMASK [<maskno[,std mask[,ext mask]]]

Comments:

CANMASK without parameters will show the configuration of the masks.

If DIM CANTEST(7) has been executed before CANMASK the values of CANTEST are as
following:

CANTEST(2*x) = standard value of CANMASK x
CANTEST((2*x)+1) = extended value of CANMASK x

If only standard value of CANMASK is entered:
CANTEST((2*x)+1) = 999999

CANMASK with only the maskno will set the mask to all 0, meaning all bits are not relevant.
maskno can be 0 - 3.

CANMASK with maskno and std mask will mask the bits in the standard part which are
set to 1. It will not mask the IDE bit itself.

CANMASK with maskno, std mask and ext mask masks the 1 bits in both standard
and extended part. Also the IDE bit is masked.

Please keep in mind that after changing the mask, all Rx FIFO’s are reset.

Examples:

CANMASK:’Show all 4 masks with parameters

CANMASK 0,&H7FF:’Set Mask 0 to all bits relevant

CANMASK 1,0:’Set Mask 1 to all bits not relevant

CANMASK 2,&H7FF,&H3FFFF:’Set Mask 2 relevant for all IDs,
standard and extended

2.12 CANOBJECT

Purpose:
Perform a Tx or Rx message on the CANbus in the background

Syntax:
CANOBJECT [#<fileno>][,<fifono>[,<timer>]]

Comments:

Once an object has started it will continue running until it is stopped again with the same
CANOBJECT command. CTRL-C will stop all CANOBJECTs. The CANOBJECT is activated
by the 1 ms interrupt and running completely independent of a Basic program. One can
configure the CANOBJECTs in a Basic program, together e.g. with CANIOLINKs and after the
END of the program these CANOBJECTs will continue. They have to be stopped by CTRL-C
before the program or another program is started. Also don’t execute LOAD or SAVE when
CANOBJECTs are still running.

A total of 32 CANOBJECTs (fifono = 0 to 31) can run in the background. Every
CANOBJECT is linked to an unique FIFO. So by default only 2 objects are active (Object 0 for
Tx and object 1 for Rx) after CANOPEN. If more objects are needed they should be configured
first by the CANFIFO and CANLINK (to be active for Rx) commands. Please keep in mind that
the objects are scanned sequential starting at 0 and ending as soon as an inactive FIFO has
been detected. An object is inactive when the timer is set to 0.

As the objects are linked to the FIFO’s it is obvious that we have Tx and Rx objects. The
values of the object can be linked to Basic variables. The following variables can be declared
(DIM) for this purpose: CANOBJnnID, CANOBJnnCTRL, CANOBJnnDATA(8),
CANOBJnnTS. nn should be replaced by the FIFOno. In fact it is enough to declare
CANOBJnnDATA(10). This will automatically use the upper 3 value as reference to the ID,
CTRL and TS variables. Never write or read to the elements 8, 9 and 10 of the array because
otherwise the references to the other parameters are lost.

The DATA array contains the databytes. The CTRL parameter by default the DLC, added
with 64 when the RTR is activ and added with 128 when EXT is activ. The ID contains the
identifier and TS the timestamp of the last object action. As the floating point numbers in
Basic are only accurate up to 1000000 and the extended identifier can go up to 536870911, it
has been decided that the millions of the ID are multiplied by 1000 and added to the CTRL
parameter. So a message with ID 536870911 and 8 bytes of data will have: ID=870911 and
CTRL=536136 (136=128+8; 536 has to be multiplied by 1000000 and added to ID).

When all Basic parameters are defined for a Tx object, the object will be sent with these
parameters. Otherwise the Tx FIFO can be configured by the CANSEND command (fill only).
In this way also multiple messages can be sent by one object, if the FIFO depth is larger than
1. When the Basic parameters are defined for an Rx object, they will be refreshed with every
new message for this object. Please keep in mind that all parameters have to be available,
otherwise the object will be handled without the Basic parameters. In fact DIM
CANOBJnnDATA(10) will do the job.

The timer is linked to the millisecond timer as used in Basic (TIMER). So the minimum
repeat time for an object is 1 ms. By default the timer for Tx objects is set to 1000 (Tx every
sec) and for Rx objects to 1 (check for messages every 1 ms). Any other value can be given in
the optional parameter for every object. The command can be used as toggle between default
and off. As the default object (no FIFO specified) is object 0, one can define all objects and
after that just toggle them with the command CANOBJECT, because timer0=0 means inactive
and also the other objects in this case. If we want only object 0 inactive and all the others still
running, we should give the object a high timer value, e.g. 1000000000 or simply define it
without BASIC parameters and empty FIFO (no CANSEND).

Also single shot Tx CANOBJECTs are possible. The command CANOBJECT 1xx,timer fires
the object xx (00-31) once. The timer will have a delay time of 1 to 1.000.000.000 ms. before
the message is actually transmitted. After the single shot object is fired, the object remains in
the list, however with an inactive status. The object can be deleted again by setting timer to 0
or recalled by CANOBJECT 1xx,timer.

If the CANOBJECT is a Rx object, the timer in CANOBJECT 1xx,timer will contain the
Basic line no. where to jump to (an interrupt like SETTICK). IRETURN will end this
subroutine. Also for Rx objects the command has to be repeated in the subroutine just before
IRETURN for continuous receive.

The command CANOBJECT 1xxyy,timer will fire the object xx, when the object yy has
been detected. For Tx the timer parameter contains the no. of object yy, which has to be
received; for Rx objects it is the delay time. Entering CANOBJECT 1xxyy,0 will delete the
object.

It is possible to have CANOBJECTs on both CANports. To do that you have to activate the first
CANport and after that switch to the other port and activate that port too. Now you can
define the CANOBJECTs as before. We now have the following syntaxes:
CANOBJECT 2xx,timer: starts repetitive objects on the alternate port
CANOBJECT 3xx,timer: starts a single shot object on the alternate port
CANOBJECT 3xxyy,timer: starts a dependant object on the alternate port

As the CANOBJECTs work in the background it is possible to combine them with other CAN
commands. However this can lead to strange situations, e.g. when working with rx-objects
and the CANLOG command in parallel. Some messages can be achieved by the CANLOG
command and others by the CANOBJECT.

If two CAN ports are available it is possible to send objects on one port and log them on the
other port. Therefore it is possible to start the objects on one port and switch to the other port
with CANRESET 2. Now we can use all the other CAN commands on the other port. At the
first CANOBJECT command the CAN port to be used for all CANOBJECTs is defined. This can
only be reset by going back to this port by CANRESET 0 or CANRESET 1. All objects are
reset in this way.

By specifying # fileno, the object is logged in the UNICANNER format. #0 means logged
on the screen, a number #1 or #2 in a file when it is opened for OUTPUT before. Don’t forget
to close the file.

A counter is used to register all objects which occur, both a successful Tx as Rx. This counter
can be read by the reserved command CANOBJECT 32 (fileno and timer are irrelevant). The
value of the counter is returned. If the basic variable CANOBJCOUNTER is defined, the value
will be stored in this variable. This variable will only be refreshed after a new CANOBJECT
32 command.

The Basic parameter CANBLINK can be used to toggle the green LED.

For testing the data bytes in a tx CANOBJECT can have values greater than 255. In this case
the value has to be interpreted as following in bits: <rtdMMMmmmvvvDDDDDDDD>.
DDDDDDDD is the 8 bits data to start with; vvv is the increment/decrement value (0, 1, 2, 4,
8, 16, 32, 64); mmm is the minimum value (0, 1, 2, 4, 8, 16, 32, 64); MMM is the maximum
value (255, 127, 63, 31, 15, 7, 3, 1); d is the direction (0 inc., 1 dec.); t is the type of change (0
sawtooth, 1 triangle); r is random (if this bit is 1, a random value between 0 and the inc/dec
value will be used for inc/dec).

Warning: As the CANOBJECT is linked to the millisecond timer it can influence the
behaviour of the real-time clock. If the handling of the objects exceeds 1 ms, the next ms
interrupt will be delayed. It is known that if logging is active that the handling exceeds 1 ms,
so use logging only for testing and not for an application running in real-time.

CANOBJECT can also be used as a function to get the status of the CANOBJECTs. Description
is found in the item in the functions (3.22).

Next pages show all CANOBJECT possibilities.

Example:

 CANFIFO 0,1,1
 DIM CANOBJ00DATA(10):CANOB00ID=100:CANOBJ00CTRL=1

CANOBJ00DATA(0)=100
CANOBJECT 0,100

This will send a message, with ID 100 and a databyte 100 every 100 ms.

Overview of CANOBJECT possibilities

The line OBJECTS in CANSTATUS shows the status of all possible 32 objects. Every object is
represented by 2 hexadecimal digits. The MSB is used for active/non-active. Active objects
have a status of 80 up to FF. In this table you can see how the status has been reached.

The columns are described as following:

optional log specification: none(no logging), #0 (screen), #1 or #2 (file)

objectno.: xx (standard), 1xx (single-shot), 1xxyy (dependent of yy)
idem on alternate port: 2xx (standard), 3xx (single-shot), 3xxyy (dependent of yy)

Rx/Tx: (parameter set by CANFIFO)

optional BASIC parameters: yes or no

Single shot active: yes or no (parameter automatically changed after single shot occurred)

Timer function: timer (repeat time in ms), counter (no of messages),
 delay (delay time in ms) or lineno (jump to BASIC subroutine)

CANport: standard or alternate (std or alt)

status opt. logspec. objectno. Rx/Tx opt. BASIC Single shot Timer function CANport

80 none xx Tx no no timer std

81 none 1xxyy Tx no no counter std

82 none 1xx Tx no no delay std

83 none 1xx Tx no yes delay std

84 none 2xx Tx no no timer alt

85 none 3xxyy Tx no no counter alt

86 none 3xx Tx no no delay alt

87 none 3xx Tx no yes delay alt

88 #0 xx Tx no no timer std

89 #0 1xxyy Tx no no counter std

8A #0 1xx Tx no no delay std

8B #0 1xx Tx no yes delay std

8C #0 2xx Tx no no timer alt

8D #0 3xxyy Tx no no counter alt

8E #0 3xx Tx no no delay alt

8F #0 3xx Tx no yes delay alt

90 #1 xx Tx no no timer std

91 #1 1xxyy Tx no no counter std

92 #1 1xx Tx no no delay std

93 #1 1xx Tx no yes delay std

94 #1 2xx Tx no no timer alt

95 #1 3xxyy Tx no no counter alt

96 #1 3xx Tx no no delay alt

97 #1 3xx Tx no yes delay alt

98 #2 xx Tx no no timer std

99 #2 1xxyy Tx no no counter std

9A #2 1xx Tx no no delay std

9B #2 1xx Tx no yes delay std

9C #2 2xx Tx no no timer alt

9D #2 3xxyy Tx no no counter alt

9E #2 3xx Tx no no delay alt

9F #2 3xx Tx no yes delay alt

status opt. logspec. objectno. Rx/Tx opt. BASIC Single shot Timer function CANport

A0 none xx Tx yes no timer std

A1 none 1xxyy Tx yes no counter std

A2 none 1xx Tx yes no delay std

A3 none 1xx Tx yes yes delay std

A4 none 2xx Tx yes no timer alt

A5 none 3xxyy Tx yes no counter alt

A6 none 3xx Tx yes no delay alt

A7 none 3xx Tx yes yes delay alt

A8 #0 xx Tx yes no timer std

A9 #0 1xxyy Tx yes no counter std

AA #0 1xx Tx yes no delay std

AB #0 1xx Tx yes yes delay std

AC #0 2xx Tx yes no timer alt

AD #0 3xxyy Tx yes no counter alt

AE #0 3xx Tx yes no delay alt

AF #0 3xx Tx yes yes delay alt

B0 #1 xx Tx yes no timer std

B1 #1 1xxyy Tx yes no counter std

B2 #1 1xx Tx yes no delay std

B3 #1 1xx Tx yes yes delay std

B4 #1 2xx Tx yes no timer alt

B5 #1 3xxyy Tx yes no counter alt

B6 #1 3xx Tx yes no delay alt

B7 #1 3xx Tx yes yes delay alt

B8 #2 xx Tx yes no timer std

B9 #2 1xxyy Tx yes no counter std

BA #2 1xx Tx yes no delay std

BB #2 1xx Tx yes yes delay std

BC #2 2xx Tx yes no timer alt

BD #2 3xxyy Tx yes no counter alt

BE #2 3xx Tx yes no delay alt

BF #2 3xx Tx yes yes delay alt

status opt. logspec. objectno. Rx/Tx opt. BASIC Single shot Timer function CANport

C0 none xx Rx no no timer std

C1 none 1xxyy Rx no no counter std

C2 none 1xx Rx no no delay std

C3 none 1xx Rx no yes delay std

C4 none 2xx Rx no no timer alt

C5 none 3xxyy Rx no no counter alt

C6 none 3xx Rx no no delay alt

C7 none 3xx Rx no yes delay alt

C8 #0 xx Rx no no timer std

C9 #0 1xxyy Rx no no counter std

CA #0 1xx Rx no no delay std

CB #0 1xx Rx no yes delay std

CC #0 2xx Rx no no timer alt

CD #0 3xxyy Rx no no counter alt

CE #0 3xx Rx no no delay alt

CF #0 3xx Rx no yes delay alt

D0 #1 xx Rx no no timer std

D1 #1 1xxyy Rx no no counter std

D2 #1 1xx Rx no no delay std

D3 #1 1xx Rx no yes delay std

D4 #1 2xx Rx no no timer alt

D5 #1 3xxyy Rx no no counter alt

D6 #1 3xx Rx no no delay alt

D7 #1 3xx Rx no yes delay alt

D8 #2 xx Rx no no timer std

D9 #2 1xxyy Rx no no counter std

DA #2 1xx Rx no no delay std

DB #2 1xx Rx no yes delay std

DC #2 2xx Rx no no timer alt

DD #2 3xxyy Rx no no counter alt

DE #2 3xx Rx no no delay alt

DF #2 3xx Rx no yes delay alt

status opt. logspec. objectno. Rx/Tx opt. BASIC Single shot Timer function CANport

E0 none xx Rx yes no timer std

E1 none 1xxyy Rx yes no counter std

E2 none 1xx Rx yes no delay std

E3 none 1xx Rx yes yes delay std

E4 none 2xx Rx yes no timer alt

E5 none 3xxyy Rx yes no counter alt

E6 none 3xx Rx yes no delay alt

E7 none 3xx Rx yes yes delay alt

E8 #0 xx Rx yes no timer std

E9 #0 1xxyy Rx yes no counter std

EA #0 1xx Rx yes no delay std

EB #0 1xx Rx yes yes delay std

EC #0 2xx Rx yes no timer alt

ED #0 3xxyy Rx yes no counter alt

EE #0 3xx Rx yes no delay alt

EF #0 3xx Rx yes yes delay alt

F0 #1 xx Rx yes no timer std

F1 #1 1xxyy Rx yes no counter std

F2 #1 1xx Rx yes no delay std

F3 #1 1xx Rx yes yes delay std

F4 #1 2xx Rx yes no timer alt

F5 #1 3xxyy Rx yes no counter alt

F6 #1 3xx Rx yes no delay alt

F7 #1 3xx Rx yes yes delay alt

F8 #2 xx Rx yes no timer std

F9 #2 1xxyy Rx yes no counter std

FA #2 1xx Rx yes no delay std

FB #2 1xx Rx yes yes delay std

FC #2 2xx Rx yes no timer alt

FD #2 3xxyy Rx yes no counter alt

FE #2 3xx Rx yes no delay alt

FF #2 3xx Rx yes yes delay alt

2.13 CANOPEN

Purpose:
Set a CANport to operational.

Syntax:
CANOPEN [speed[,special[,ts resolution]]]

Comments:

When CANOPEN runs for the first time and CANFIFO has not been executed yet, it will set
two FIFO's. The first one for sending messages, which is 2 messages deep, the second one for
receiving, 32 messages deep. Standard the receiving filter is set to receiving all messages.
Standard also the timestamp is enabled and set to a resolution of 100 uS.

speed is by default the parameter which specifies the CAN bitrate in bits/sec. The range is
25000 up to 1000000. It is also possible to specify the bitrate in kbits/sec (25 - 1000).
The default value of speed is 0. This means the value is not changed. In this way one can
change the special or ts resolution parameter without having to know the actual
speed.
The values 1-7 are used for autobauding and the values 8-24 to change configuration and
control registers of the CAN controller in a very specific way (experienced users only). See
table on the next page for all possible speed values.

special is used to open the CAN-port in a non-standard way. Speed must be specified in
this case. The value of special can be 0 to 255 (8 bits) where all bits have their specific
meaning: <oowtmsjj>.
The 2 LSB's (jj) are the two bits to configure the SJW (synchronisation jump width):
 00 : 1 clock cycle (default) 01 : 2 clock cycles
 10 : 3 clock cycles 11 : 4 clock cycles
The next one (s) determines the number of samples:
 0 : 1 sample (default) 1 : 3 samples
The next one (m) determines the position in the period for sampling:
 0 : 75% (default) 1 : 80%
The next one (t) determines the availability of timestamps:
 0 : timestamps available (default)
 1 : timestamps off
The next one (w) enables or disables the wakeup facility
 0 : disabled (default) 1 : enabled
The two most significant bits (oo) determine the operation mode:
 00 : normal operation (default)
 01 : loopback mode (also own tx messages can be received)
 10 : listen-only mode (no errorframes; no ACK)
 11 : all message mode (all messages, also fault ones, are received)

The third optional parameter ts resolution (special must also be specified in this
case) sets the timestamp resolution. This value ranges from 1 uSec minimal to 800 uSec
maximal. Default value is 100 uSec.

Values of the <speed> parameter in CANOPEN

VALUE DESCRIPTION REGISTERS

0 Value is not changed

1-6 Bitrate test 1-2 during 1 sec/bitrate; 3-4 during 0.1 sec; 5-6 during 10 sec CANCFG for BTR

1, 3, 5 Testing predefined bitrates with display of the process * CANCON for:

2, 4, 6 As above without display; to be used within a Basic program * - Listen Only

7 Testing all possible values ** - SJW = 4

8 Increment PRSEG CANCFG

9 Decrement PRSEG CANCFG

10 Increment TSEG1PH CANCFG

11 Decrement TSEG1PH CANCFG

12 Increment TSEG2PH CANCFG

13 Decrement TSEG2PH CANCFG

14 Increment BRP CANCFG

15 Decrement BRP CANCFG

16 Increment measuring point (inc PRSEG or TSEG1PH / dec TSEG2PH) CANCFG

17 Decrement measuring point (dec PRSEG or TSEG1PH / inc TSEG2PH) CANCFG

18 Toggle TSEG2PHTS on/off CANCFG

19 Set ABAT (reset all pending Tx) CANCON

20 Increment DeviceNet Filter CANCON

21 Decrement Devicenet Filter CANCON

22 Toggle SIDLE bit CANCON

23 Reserved for future use

24 Toggle CAN module ON/OFF CANCON

25 -1000 Set bitrate in kbits/sec CANCFG+CANCON

1001 - 24999 Illegal

25000 - 1000000 Set bitrate in bits/sec CANCFG+CANCON

> 1000000 Illegal

* Bitrates are defined by 4 ranges starting high and taking 50% of it for the next
measurement: 1000/500/250/125/62.5, 800/400/200/100/50, 666.7/333.3/166.7/83.3/41.7,
600/300/150/75/37.5. If a bitrate is found the process is stopped, the found bitrate is set and the
mode is set to NORMAL.

** Bitrate is defined by 1000, decreased with 1% for every next measurement (time 0.1 sec).
As soon as bitrate(s) are found the process is stopped. The bitrate is not set yet. This has to be
done with a new CANOPEN command.

Examples:

CANOPEN 500:’Open CANbus on 500 kbit/sec

CANOPEN 500000:’The same

CANOPEN 1:’Autobauding on most used bitrates

CANOPEN 7:’Autobauding on all bitrates

CANOPEN 500,128:’Open 500 kbit/sec listen only mode

CANOPEN 500,128,10:’The same; timestamp resolution 10us

2.14 CANPHYS

Purpose:
Enable physical (analogue) measurements on a CANbus

Syntax:
CANPHYS [parameter[,no]]

Comments:

CANPHYS is a statement not only using the CANports, but also most of the Arduino I/O pins
are involved. That is why it can only be used with an additional Arduino hardware extension.
If this hardware is included please remember that you cannot use the I/O pins for other
purposes.

The statement uses the second CANport for measurement. The first one can be used to
generate messages, which can be evaluated on the second one. The measurement port has the
connection to the additional I/O ports. Both CAN High and CAN Low can be measured on
their physical analog values. Timing is measured at the CAN Rx pin of the CAN transceiver
chip. Both the edges to dominant and to recessive are determined in real time. The CAN timer
is used to have an accurate measurement of the periods between the edges. In this way we get
an exact bit-pattern in real time during the CAN message.

CANPHYS parameter consists of 16 bits, each representing an on/off parameter, used at the
start of the command, during execution or at the end of the command. We used all these
parameters to make the command as flexible as possible. The Basic program has to be written
in such a way that the command is used in an optimal way. The bits are represented by:
<lhLH CDSF EeNR 21PX>, where:

l = Do the analog measurement on CAN Lo during recessive situation
h = Do the analog measurement on CAN Hi during recessive situation
L = Do the analog measurement on CAN Lo during dominant situation
H = Do the analog measurement on CAN Hi during dominant situation

C = Calibrate before the actual measurement is started
D = Delay the analog measurement depending on the bitrate
S = Start analog measurements after SOF; normally started after the arbitration period
F = Convert relevant values to floats after the measurement, which can be used in Basic

E = Eliminate analog values which are out of range, before statistics are calculated
e = Stop measurement as soon as an error frame is detected on the bus
N= Don’t check for new SOF; can be used when only one message (ID) is used
R = Recessive edges skipped; to be used at very high bitrates

2 = Higher bit to set minimum no of identical bits
1 = Lower bit to set minimum no of identical bits
P = Do the measurement on the message for pattern only
X = An extended identifier is expected; used during measurement and calculation

The analog measurements are triggered by an edge on the Rx pin of the CAN transceiver
chip. Both edges (0 -> 1 and 1 -> 0) are determined by default. For high speeds it is possible to
skip the recessive edge (0 -> 1) by setting the <R> option. Measurements are done one by one.
E.g. if options <H>, <L>, <h>, <l> and <P> are set. The first message is evaluated on CAN Hi
dominant, second CAN Lo dominant, third CAN Hi recessive, fourth CAN Lo recessive and
the fifth pattern only.

At the start of the CANPHYS command the CAN Hi and CAN Lo voltages are also measured
and stored. These measurements can be used as a reference. If the bus is idle (recessive)
during this measurement, also a calibration can be done by setting the <C> parameter. As the
CAN Hi measurement is done through a voltage divider (⅚), the calculation factor (1.2 by
default) is calculated in this calibration. If all other parameters are 0, it is possible to do a
calibration measurement only.

The analog measurement is started with a short delay after the edge. At lower bitrates it is
better to have a longer delay, because then we have a more stable signal. This can be done by
setting the <D> parameter.

Normally we start the analog measurements after the arbitration phase in the message.
Therefore we have to set the <X> parameter if we want to check a message with an extended
identifier. It is possible to start the analog measurements directly after the Start Of Frame
(SOF), by setting the <S> parameter.

At the end of the measurement, statistics are started to calculate maximum, minimum and
mean values. Also the standard deviation is calculated. Due to glitches sometimes an error can
occur during the analog measurement. We can skip the “out of range” measurements by
setting the <E> parameter. It is also possible to skip the measurements, in which the bus
remains only for 1, 2 or 3 bits in a certain state. If <1> and <2> are both 0, all measurements
are taken into account. If <2><1> is 01, all single bits are skipped. If <2><1> is 10 also the
only 2 identical bits are skipped and if 11 also the 3 identical bits are skipped.

When we want to measure the signals of one specific message we will set a filter to that
message. However normally also other messages (other identifiers) will be transmitted over
the bus. If the message does not fulfill the filter parameters, the CAN controller will not
recognise the message. In the measurement we have to skip such a message. Therefore we are
always looking for a new message starting (new SOF). If this occurs and the previous message
was not recognised by the CAN controller, normally all measurements are skipped and a new
measurement is started. If we are just testing with one identifier we can disable the checking
for a new SOF by setting the <N> parameter. This gives a better reliability at higher speeds.

In some circumstances also error frames can occur on the bus. By default there is no checking
on errors. By setting <e> the checking is enabled and the test stopped when an error frame is
detected. In the bit pattern one can see at which position in the frame the error occurred.

On the hand of the edges and the timer values, the bit pattern of the message is evaluated,
including the stuff bits and CRC. The bit pattern can be read at the positions which will be
shown later. If the evaluation is correct one of the bits in the array will be set to 1, otherwise it
will be 0. If the <P> is set during this last measurement also the red LED will be set, if the
message is not correct.

Normally one can read all measurements from memory byte by byte by the Basic PEEK
statement. If <F> is set, the statistical values of all measurements are converted to floats. If
this is done the original actual measurements are overwritten by these float values.

If <P> is set, an extra measurement is performed for the bit pattern.

CANPHYS has an optional second parameter, called no. If this parameter has a value of
more than 1, the measurement is repeated no of times. After every measurement the
statistics are calculated again. At the end the minimum, maximum, mean and standard
deviation values are calculated over the whole range of measurements.

The Basic variable CANPHYSARRAY is created automatically by the CANPHYS command.
This is an array of 128 values. So in fact it does a DIM CANPHYSARRAY(128). You can set
this Basic statement also before you activate the CANPHYS command, but never set the
dimension lower than 128, otherwise the system will crash. This array will be used for the
results of the CANPHYS measurement. So we have in fact 128 floats (if calculated to floats) or
512 bytes. The tables at the end of this command show both the byte values as well as the float
values.

Two other optional Basic variables can be defined, CANPHYSOK and CANPHYSADDRESS.
CANPHYSADDRESS is needed if we want to read the values as bytes with the PEEK
statement. After DIM CANPHYSADDRESS, any byte value can be read by:
x=PEEK(&HA001,CANPHYSADDRESS+n).

CANPHYSOK has the global result of the CANPHYS measurement after the measurement:
0 = Voltages at start out of range; probably not a correct connection to a CANbus
1 = Measurement OK
2 = Dominant level detected during calibration (only possible when <C> is set.
3 = Calibration only done. This means <C> was the only parameter which was set.
4 = Stop by STOP switch. This is the hardware stop switch.
5 = Stop by Error frame
6 = Message corrupt. This can only if <P> is set
7 = Edge count overrun. This means that a new SOF is not detected.
8 = Analog values not correctly registered.

The CANPHYS measurement has three phases during execution:

Phase 1: The pre-measurement
The voltages of CAN Hi and CAN Lo are measured. An optional calibration is performed. All
interrupts of timers, VGA and USB are disabled. The USB connection on the host has to be
switched off also. Now we will wait for the first CAN message received by the CANcontroller.
This message is used for synchronisation.

Phase 2: The actual measurement
The message is received. The measurements are done depending on the parameters. This is
done until the second message is received by the CANcontroller. Values are overwritten if they
come from other messages than the selected one.

Phase 3: The post-measurement
The message is received for the second time. Values are frozen now. Statistics for maximum,
minimum, mean and standard deviation are calculated. Optionally the message is calculated
and compared with the values of the CANcontroller. Optional values are calculated to floats.
The interrupts for timer, VGA and USB are enabled again. All Basic values are available now.

Remark: Because we switch off the USB interrupts, the connection with the host is also lost.
That is why we should disconnect a terminal program on the host when the CANPHYS
command is executed and set up a new connection after the command has ended.

The CANPHYS command is a quite complex issue, with a lot of possibilities. It should only be
used directly by CAN experts. SI-Kwadraat delivers a set of Basic example programs to be
used with it. These programs can be edited or extended by the user to satisfy his or her needs.

Table of byte values of the results of CANPHYS command

 y=0;z=8 y=1;z=9 y=2;z=a y=3;z=b y=4;z=c y=5;z=d y=6;z=e y=7;z=f

0x00y CAN0 timer
LSB

CAN0 timer
MSB

First analog-
LSB

value
MSB

Second
LSB

value
MSB

Etc. Etc.

0x00z Analog

values continue up to 0x051 inclusive

0x01y If 1

voltage is measured: Up to 40 values are registered.

0x01z If 2

voltages are measured: Up to 20 values per measurement are registered

0x02y If 3

voltages are measured: Up to 13 values per measurement are registered

0x02z If 4

voltages are measured: Up to 10 values per measurement are registered

0x03y

0x03z The order of measurement is: CAN-Lo
recessive

CAN-Hi
recessive

CAN-Lo
dominant

CAN-Hi
dominant

0x04y Value

CAN-Lo: 0 = 0 volt; 1023 = 3.3 volt

0x04z Value

CAN-Hi 0 = 0 volt 1023 = ~ 4.0 volt

0x05y Last analog-
LSB

value
MSB

Analog -
LSB

value ACK
MSB

Max. value -
LSB

CAN-Hi 0
MSB

Min. value -
LSB

CAN-Hi 0
MSB

0x05z Mean value-
LSB

CAN-Hi 0
MSB

Std. Dev.-
LSB

CAN-Hi 0
MSB

Max. value -
LSB

CAN-Lo 0
MSB

Min. value -
LSB

CAN-Lo 0
MSB

0x06y Mean value-
LSB

CAN-Lo 0
MSB

Std. Dev.-
LSB

CAN-Lo 0
MSB

Max. value -
LSB

CAN-Hi 1
MSB

Min. value -
LSB

CAN-Hi 1
MSB

0x06z Mean value-
LSB

CAN-Hi 1
MSB

Std. Dev.-
LSB

CAN-Hi 1
MSB

Max. value -
LSB

CAN-Lo 1
MSB

Min. value -
LSB

CAN-Lo 1
MSB

0x07y Mean value-
LSB

CAN-Lo 1
MSB

Std. Dev.-
LSB

CAN-Lo 1
MSB

Mess. error
If 1

Time offset
In uS

CAN-Hi Cor
LSB

rect * 1000
MSB

0x07z Calibration -
LSB

CAN-Hi
MSB

Calibration -
LSB

CAN-Lo
MSB

No. of
edges

No. of bits
in message

No. of
stuff bits

Total no. of
measurement

 y=0;z=8 y=1;z=9 y=2;z=a y=3;z=b y=4;z=c y=5;z=d y=6;z=e y=7;z=f

0x08y Timestamp
SOF = 0

Timestamp
2nd edge

Timestamp
3rd edge

Etc. Etc. |
|

|
|

|
|

0x08z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x09y Timestamps

are in uS. |
|

|
|

|
|

|
|

|
|

|
|

0x09z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0ay Maximum

128 edges can occur in one message |
|

|
|

|
|

0x0az |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0by |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0bz |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0cy |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0cz |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0dy |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0dz |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0ey |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0ez |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0fy |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x0fz |
|

|
|

|
|

|
|

|
|

|
|

|
|

End of
timestamps

 y=0;z=8 y=1;z=9 y=2;z=a y=3;z=b y=4;z=c y=5;z=d y=6;z=e y=7;z=f

0x10y Start of
|

Bit pattern
|

CAN mess.,
|

including
|

Stuff bits
|

|
|

|
|

|
|

0x10z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x11y |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x11z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x12y |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x12z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x13y |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x13z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x14y |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x14z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x15y |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x15z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x16y |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x16z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x17y |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x17z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

 y=0;z=8 y=1;z=9 y=2;z=a y=3;z=b y=4;z=c y=5;z=d y=6;z=e y=7;z=f

0x18y |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x18z |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x19y |
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

0x19z |
|

|
|

|
|

|
|

|
|

|
|

|
|

End of
Bit pattern

0x1ay CAN mess
ID LSB

CAN mess
ID byte 2

CAN mess
ID byte 3

CAN mess
ID MSB

CAN mess
CTRL byte

CAN mess
Data 1

CAN mess
Data 2

CAN mess
Data 3

0x1az CAN mess
Data 4

CAN mess
Data 5

CAN mess
Data 6

CAN mess
Data 7

CAN mess
Data 8

CAN mess.
timestamp

0x1by Float value-

Maximum- Time- Shift Float value- Minimum- Time- Shift

0x1bz Float value-

Total Time- Shifts Float value- Total - Squares of- Time Shifts

0x1cy CAN Hi-
LSB

Dominant-
2nd byte

Total-
3rd byte

No. values
MSB

CAN Hi-
LSB

Dominant-
2nd byte

Total-
3rd byte

Values
MSB

0x1cz CAN Hi-
LSB

Recessive-
2nd byte

Total-
3rd byte

Squares
MSB

CAN Hi-
Maximum-

Dominant
Value

CAN Hi-
Minimum-

Dominant
Value

0x1dy CAN Lo-
LSB

Dominant-
2nd byte

Total-
3rd byte

No. values
MSB

CAN Lo-
LSB

Dominant-
2nd byte

Total-
3rd byte

Values
MSB

0x1dz CAN Lo-
LSB

Dominant-
2nd byte

Total-
3rd byte

Squares
MSB

CAN Lo-
Maximum-

Dominant
Value

CAN Lo-
Minimum-

Dominant
Value

0x1ey CAN Hi-
LSB

Recessive-
2nd byte

Total-
3rd byte

No. values
MSB

CAN Hi-
LSB

Recessive-
2nd byte

Total-
3rd byte

Values
MSB

0x1ez CAN Hi-
LSB

Recessive-
2nd byte

Total-
3rd byte

Squares
MSB

CAN Hi-
Maximum-

Recessive
Value

CAN Hi-
Minimum-

Recessive
Value

0x1fy CAN Lo-
LSB

Recessive-
2nd byte

Total-
3rd byte

No. values
MSB

CAN Lo-
LSB

Recessive-
2nd byte

Total-
3rd byte

Values
MSB

0x1fz CAN Lo-
LSB

Recessive-
2nd byte

Total-
3rd byte

Squares
MSB

CAN Lo-
Maximum-

Recessive
Value

CAN Lo-
Minimum-

Recessive
Value

Table of float values of the results of CANPHYS command

 y=0;z=8 y=1;z=9 y=2;z=a y=3;z=b y=4;z=c y=5;z=d y=6;z=e y=7;z=f

0x00y CAN-Hi 0
maximum

CAN-Hi 0
minimum

CAN-Hi 0
average

CAN-Hi 0
Std. dev.

CAN-Lo 0
maximum

CAN-Lo 0
minimum

CAN-Lo 0
average

CAN-Lo 0
Std. dev.

0x00z CAN-Hi 1
maximum

CAN-Hi 1
minimum

CAN-Hi 1
average

CAN-Hi 1
Std. dev.

CAN-Lo 1
maximum

CAN-Lo 1
minimum

CAN-Lo 1
average

CAN-Lo 1
Std. dev.

0x01y Last ACK
voltage

Calibration
CAN-Hi

Calibration
CAN-Lo

CAN-Hi
correction

Timing
correction

Timing
error

Time
difference

No. of
edges

0x01z No. of
Bits

No. of
Stuff bits

No. of
Analog val.

Message
Timestamp

Message
ID

Message
ID ext.

Message
CTRL

Message
CRC

0x02y Message
Data 1

Message
Data 2

Message
Data 3

Message
Data 4

Message
Data 5

Message
Data 6

Message
Data 7

Message
Data 8

0x02z Time Shift
Maximum

Time Shift
Minimum

Time Shift
Average

Time Shift
Std. Dev.

Not used

Not used

Not used

Not used

0x03y Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

0x03z Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

0x04y Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

0x04z Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

0x05y Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

0x05z Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

0x06y Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

0x06z Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

0x07y Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

0x07z Not used

Not used

Not used

Not used

Not used

Not used

Not used

Not used

2.15 CANRCV

Purpose:
Read one message from an Rx FIFO

Syntax:
CANRCV [id[,type[,id_ext[,len[,data(),ok]]]]]

Comments:
type consists of 16 bits (<g><ss><ttttt><nnnnn><o><r><e>), where

● <g> = global type; <g>=1 (set before CANRCV) to receive the message in the
format specified by <ss>; <g>=0 to receive only <e> in <type>.

● <ss> = specific global type:
● 00 The filter no. which was hit for this message included in <ttttt>
● 01 The 5 LSB's of timestamp included in <ttttt>
● 10 The 5 MSB's of timestamp included in <ttttt>
● 11 The complete 16 bit timestamp in type (all other info lost)

● <ttttt> = The result of ss
● <nnnnn> = The Fifo no.
● <o> = Overflow flag <o>=1 when the overflow flag was set in the FIFO
● <r> = RTR bit; when <r>=0 a data frame is received; <r>=1 an RTR frame
● <e> = Extension bit; when <e>=1 the <id_ext> contains the 18 LSB of ID, if id_ext

available.

All parameters in CANRCV are opti onal. If not specified the default parameters rx… are
dimensioned automatically. If specified by a variable, this variable has to be dimensioned by
the user.

0 parameters: dim rxid; dim rxtype; dim rxide; dim rxdlc; dim rxdata(8); dim rxok.
1 parameter: id is specified; dim rxtype; dim rxide; dim rxdlc; dim rxdata(8); dim rxok.
2 parameters: id and type are specified; dim rxide; dim rxdlc; dim rxdata(8); dim rxok
3 parameters: id, type and len are specified; dim rxdata(8); dim rxok (no id split)
4 parameters: id, type, len and data are specified; dim rxok (no id split)
5 parameters: id, type, len, data and ok are specified (no id split)
6 parameters: id, type, ext id, len, data and ok are specified

The Basic variable CANRXERRCNT will be updated if it is used in Basic. It contains the
actual status of the Rx error counter.

Example:

CANRCV
IF rxok=0 THEN PRINT “No messages received” ELSE PRINT
rxid;rxide;rxtype;rxdlc;rxdata(0)

2.16 CANREG

Purpose:
Read directly a CAN register or FIFO entry

Syntax:
CANREG [regno]

Comments:

CANREG shows the hex value in the CAN register(s) with regno if regno < 181. If DIM
CANTEST(1) has been executed before CANREG CANTEST(0) will get the LSB and
CANTEST(1) the MSB of the register value.

CANREG will set the CAN register (regno - 500) to the values of CANTEST(0) and
CANTEST(1) if 499 < regno < 681.

CANREG shows the hex value in the FIFO register(s) with (regno - 1000) if
999 < regno < 2024. If DIM CANTEST(3) has been executed before CANREG
CANTEST(0) - CANTEST(3) will get the values of the FIFO registers

CANREG will set the FIFO register (regno - 3000) to the values of CANTEST(0) -
CANTEST(3) if 2999 < regno < 4024.

See Microchip datasheet for details about the CAN and FIFO registers.

To be used by experienced users only!

2.17 CANREPLAY

Purpose:
Transmit logged messages on a CANbus

Syntax:
CANREPLAY [#fileno[,fifono[,format]]]

Comments:

The CANREPLAY command can be used to send a logged file on the CANbus again. The log
file must be in the UNICANNER format (format 2 in CANLOG).

The file opened for input by fileno (1 by default) will be sent on the CANbus, using
fifono (0 by default).

fileno can also be 2 (file opened as #2) or 8 (data from CANLOGARRAY)

If fifono is specified it is possible to specify also the format parameter. If this is done
the file is logged to the screen in the format as it has been specified in CANLOG. Only formats
0 - 7 are allowed. If format > 7 then no screen logging is performed.

The Basic parameters CANPERIOD, CANLINENO, CANTIME, CANMESSNO,
CANCONTINUE, CANENDOFLINE and CANBLINK can be used as in CANLOG.

<ESC> or <CTRL-C> can be used to stop the CANREPLAY command.

Example:

CANREPLAY #1,1,4

The logfile opened for input as #1 is sent through FIFO 1 and the messages are displayed on
the screen in format 4 (Hexadecimal)

2.18 CANRESET

Purpose:
Reset a CAN controller to its default values or change the active CANbus

Syntax:
CANRESET [canport]

Comments:

CANRESET will initialise the complete CAN configuration again. So if you change the buffer
size or the protocol in the license file, the new parameters will be activated after this
command. The command however will not reinitialize the memory. So if you started with a
buffer size of 1024 and go back to 64, you also have to give the Basic command ERASE
CANMESSAGEFIFOAREA or CLEAR to free the memory again.

CANRESET can be executed with the optional parameter <canport>.

CANRESET 0 will disable CAN port 1 and activate CAN port 0. This is already the default
CAN port and this makes only sense if you want to switch from CAN port 1 to 0 again.

CANRESET 1 disables the standard CAN port 0 and enables the CAN port 1. All the other
CAN commands are now available on CAN port 1.

CANRESET 2 can only be used if either CAN port 0 or CAN port 1 is already activated by
the CANOPEN command. CANRESET 2 will automatically detect which port is already
running and will now reset to the other port. In this case nothing can be changed on the first
port anymore. The 2nd port can be configured now.

See also CANBRIDGE and CANOBJECT. These are the only two commands which benefit
from the CANRESET 2 option.

Example:

 CANRESET
 CANRESET 1

CANOPEN 500
CANRESET 2
CANOPEN 500

CAN port 1 is opened in the background and CAN port 0 on the foreground. Both ports run
at 500 kb/sec.

2.19 CANRETURN

Purpose:
Return to the calling command after executing the CAN subroutine

Syntax:
CANRETURN

Comments:

CANRETURN will return to the active CAN command after the subroutine which was entered
by CANSUB or by CANINT is finished.

2.20 CANSCRIPT

Purpose:
Execute a script from a file on the A-drive

Syntax:
CANSCRIPT filename[, #fileno]
CANSCRIPT scriptpointer[,#fileno]

Comments:

CANSCRIPT is a way to manipulate CAN data as it is done in the custom format as used in
CANLOG. Depending on the size of the scripts up to 15 different scripts can be defined. Like
the license file the scripts have to be stored on drive A. In fact the CANxxxxx.LIC file can be
used as a script file.

The command will normally be executed after a CANRCV or in the subroutine called by a
received CANOBJECT. The values of CAN ID and the databytes are used in the script, as is
the CANCLOCK.

The timestamp which can be used in CANSCRIPT is not the timestamp of the received
message, but the timestamp of the CANSCRIPT command.

Also a message number can be used, but this is the actual value of the Basic variable
CANMESSNO. If this variable is not used, it will always be 0.

The default syntax of CANSCRIPT is CANSCRIPT filename. So if a script is defined on
the A drive, which is called “CUSTOM.MSC”, one can activate it by CANSCRIPT
“CUSTOM” (MSC is the default extension for scripts: MSC=Machine Script Code).

Default all WRITE actions are to the SCREEN and terminal port. By entering # plus a
number after the filename, the WRITE action is executed to the fileno, if a file is opened with
that number, just like in CANLOG.

The CANSCRIPT command can best be used in the subroutine of a received CANOBJECT,
where it activates a response Tx message.

For performance reasons, it is advised to:
- Do not use CANMESSNO; if not defined it will always be 0 and the variable is not

looked for.
- Don’t use WRITEs in your script.
- If you sometimes want to use WRITE and in the real use not anymore, you can first

call the command by CANSCRIPT “custom” or CANSCRIPT “custom”,#0
and later CANSCRIPT “custom”,#20 (any number of 20 or higher will ignore the
WRITE function)

- Determine the pointer at the first call and after that call it just by the pointer. This is
done as following:

- 10 DIM CANSCRIPTPTR: REM variable for the pointer
- 20 CANSCRIPT “custom”,#20
- 30 ptr=CANSCRIPTPTR
- 40 CANSCRIPT ptr,#20

- The second time CANSCRIPT is called now, it does not have to search for the file on
drive A. It will directly be guided to the script code. If more than one script is used, one
has to use a different pointer for every script of course.

The description of the script code is found in the next pages.

DESCRIPTION OF THE SCRIPTING PROTOCOL

The license file can be extended with a custom protocol. Only one protocol can be active, and
this protocol will be loaded automatically at bootup. Protocols are described in a readable
script file, but have to be converted in a low level machine code to be read from the runtime
CANLOG command.

An on-line utility can be used to convert the protocol script to the embedded code in the
license file.

The machine code consists of 6 relevant bytes per line: The first one is called the command
byte and is specified below; the second one the variable, 3 and 4 are reserved for a constant
and 5 and 6 for a jump to another line; in fact the offset of the line. Although only 6 relevant
bytes are on a line, every line in principle has 10 bytes. This had to be done, because the code
is written on the A-drive and if a byte has the value 255, the next byte is skipped. This is
compensated in the 4 non-relevant bytes.

If a protocol is added to the license file, two basic commands are extended in fact:
CANSTATUS has an additional line where the name of the protocol is listed.
CANLOG has the custom protocol options enabled and the data both in trace as in object
format is converted to the chosen format.

The script has four types of commands:
1. The SPECIAL commands. Used for begin and end of the script. The start command has
the name of the protocol included. This is displayed in CANSTATUS. Also special commands
are made for floating point variables and since version 1.4 for reading and writing I/O pins,
reading the keyboard, configure and send a CAN message and reading and configuring a
timer (special values 64 up to 212).
2. The calculation command. One of the 16 user variables gets the value of a calculation.
Calculations can be done with only 2 parameters. The first parameter is always a variable. It
can be one of the user variables or one of the CAN variables. The second variable can be
either a constant value (decimal, hexadecimal or binary) or also one of the user variables.
3. The write command. This command is used to fill the actual protocol line. The parameter of
the write command can be some text or a user or CAN parameter.
4. The if command. This command is used to make a jump in the script on a certain condition.
The condition has two parameters. The first one is either a user or a CAN variable. The
second one can also be such a variable or a constant value (decimal, hexadecimal or binary).

All commands are prefixed by a line number and are in principle ended by a ":" and a CRLF.
After the ":" can be an optional line number to jump to. This is always used in the if
command where it is used to jump to if the condition is true. However it can also be used in
every other command. Based on this syntax every user specific protocol can be realised.

16 user variables can be used, numbered 0 to 15.

Variable 15 has a specific function.
In the SPECIAL commands the variable gets an error value:
0. No error

1. No key pressed
2. Pin configuration error
3. Pin out of range error
4. Not a Tx Fifo
5. Tx Fifo limit exceeded
6. Tx parameter out of range
7. No messages in Tx Fifo
8. Error in creating/editing CANOBJECT
9. CANARRAY not dimensioned

10. Index of CANARRAY out of range
11. CANPHYSARRAY not dimensioned to at least 128

If used in Calculation it is possible to enter a low level command. See at CALCULATION
commands how this is handled.

Also 16 CAN (and other special) related variables can be used. They are specified:

LSB / MSB 00 01 10 11

00 CAN ID CAN ctrl byte DB1 DB2

01 DB3 DB4 DB5 DB6

10 DB7 DB8 Mess. no Mess. spec *

11 Timestamp Float 1 Float 2 Float 3

* Mess. spec: 32 bit value (mmmmmmmmrrrrrrrroooooooooooooooo) m=max. rxc; r=act.
rxc; o=overfl.

The SPECIAL commands: bits 1 and 2 of the command byte are 0:

command variable constant jump description

0 NA NA NA Not used

4 0 0 0 End of code; start of texts; after this line

8 text text text Text line; can be more than 6 bytes; ended bij CRLF

12 NA NA NA End of protocol file

16 user var NA line Set Float 1 to user variable

20 can var NA line Set Float 1 to CAN variable

24 can dbn NA line Set Float 1 to 4 CAN bytes, n first byte, little endian

28 can dbn NA line Set Float 1 to 4 CAN bytes, n first byte, big endian

32 user var NA line Set Float 2 to user variable

36 can var NA line Set Float 2 to CAN variable

40 can dbn NA line Set Float 2 to 4 CAN bytes, n first byte, little endian

44 can dbn NA line Set Float 2 to 4 CAN bytes, n first byte, big endian

48 user var NA line Set Float 3 to user variable

52 can var NA line Set Float 3 to CAN variable

56 can dbn NA line Set Float 3 to 4 CAN bytes, n first byte, little endian

60 can dbn NA line Set Float 3 to 4 CAN bytes, n first byte, big endian

64 user var NA line Set user variable to ASCII value of key

68 user var pin no line Set user variable to value of I/O pin

72 user var pin no line Set value of I/O pin to user variable

76 user var NA line Set script timer to user variable

80 user var NA line Set user variable to script timer

84 user var NA line Set user variable to event (1 for CANRx, 2 for timer, 3 for both)

88 - 212 * can var user var line Configure CAN FIFO 0 - 31 for Tx

* Numbers in steps of 4. Only CAN ID, CT and D1 to D8 can be configured. User variables
may have offsets of 0 to 31 times 256 to write in a specific buffer of the FIFO. So it is possible
to fire up to 32 messages with one Send FIFO command. FIFO’s and CANSEND must be
configured in the right way.

Special commands continued:

command variable constant jump description

216 fifo no NA line Send CAN FIFO no

220 obj_no timer line Add or change a CANOBJECT configuration

224 user var offset line Set canarray(offset) to variable integer

228 user var offset line Set variable integer to canarray(offset)

232 user var offset line Set canarray(offset) to variable float

236 user var offset line Set variable float to canarray(offset)

240 user var NA line Set mSecTimer to variable

244 user var NA line Set variable to mSecTimer

248 * user var NA line Set variable to CRC_totalbits_stuffbits

252 0 ptr line Start of code; ptr to protocol text

* This special command uses the the routines in the CANPHYS command to calculate the
CRC, the totalbits and the stuffbits. This can be only used if the Basic variable
CANPHYSARRAY is dimensioned at least to 128.

The IF commands: command bit 0 is 0 and command bit 1 is 1

IF x COMP y is true THEN jump to specific line ELSE next line
Comparison:

Command bits 543 comp. description

000 = equal

001 < smaller than

010 > greater than

011 != not equal

100 <= smaller or equal

101 >= greater or equal

110 NA not used

111 NA not used

Command bit 6 is 0: y = User var; command bit 6 is 1: y = CAN var; not relevant if bit 8 = 0

Command bit 7 is 0: x = User var; command bit 7 is 1: x = CAN var

Command bit 8 is 0: y = Constant (value in constant bytes 3 and 4); Command bit 8 is 1: y is
variable.

Variable byte (bits 1-4): y value (all zero if command bit 8 is 0)
Variable byte (bits 5-8): x value

Constant: relevant value if command bit 8 is 0

Jump: the offset of the line no if condition is true.

The CALCULATION commands: command bit 1 is 0 and command bit 2 is 1

x = y CALC z
Calculation

Command bits 6543 calc description

0000 + add

0001 - subtract

0010 * multiply

0011 / divide

0100 & logic and

0101 | logic or

0110 << shift left (multiply by 2^z)

0111 >> shift right (divide by 2^z)

Since version 2.1 the following extra calculations have been introduced:

Command bits 6543 calc description

1000 pow y to the power of z

1001 mod y modula z (calculation done as float; result is integer)

1010 sin Sine in radians : act. formula: y * sin(z / y). Result always integer

1011 cos Cosine in radians: act formula: y * cos(z / y)

1100 log Natural Logarithmic: act. formula: y * log(z / y)

1101 l10 10th Logarithmic: act. formula: y * l10(z / y)

1110 xor y xor z

1111 hwt Hamming weight: act. formula: y + hwt(z)

Command bit 7 is 0: y = user variable; command bit 7 is 1: y = CAN variable

Command bit 8 is 0: z = constant; command bit 8 is 1: z = user variable (no in constant)

Variable byte bits 1-4: x value

Variable byte bits 5-8: y value

Constant bytes: constant value or user variable

Jump: If value other than 0 the offset for the next line

If the calculation is as follows: var15=varY+varZ, where Y and Z can be any variable between
0 and 14 a new command is calculated with the new command (low byte Y), variable (high
byte Y) and constant bytes in varZ. Jump bytes are treated as before.
If the calculation is: var15=var15+varZ (0<Z<15) a conditional jump is performed. This acts
like a Switch/Case statement or the Basic ON …. GOTO. If varZ=0 the next line is executed;
if varZ the line with an extra offset of the value of varZ is jumped to. An extra global offset
can be created by the Jump parameter.

The WRITE commands: command bit 1 is 1 and command bit 2 is 1

WRITE characters
Kind of characters:

Command bits
543

Description

000 text; constant has the offset value to the text

001 decimal value

010 hex value (no pre string)

011 hex value in format 0xvalue

100 binary value

101 float value

110 ASCII character

111 No of same ASCII characters; variable contains the number; constant the ASCII value

Command bit 6 and bit 8: reserved

Command bit 7 is 0: value is user variable; bit 7 is 1: value is a CAN variable

Variable byte: the user or CAN variable (except if no of ASCII characters is chosen; see
above)

Constant bytes: offset to the text (if text is chosen) or ASCII value (no of chr); otherwise not
relevant

Jump: If value other than 0 the offset for the next line

The basic variable CANEVENTINT can be used to activate the script by a timer. The value is
in ms. The script can now be activated by a received message on the bus, but also based on a
time interval. The command 84 is used to check which event occurred, 80 is used to write a
new value into the timer and 76 to read the current value.

The following protocols are available as script:
CANopen
J1939
FMS

2.21 CANSEND

Purpose:
Transmit one message of a FIFO register

Syntax:
CANSEND [id[,type[,id ext[,len[,data()[,<ok>]]]]]]

Comments:

type consists of 16 bits (<f><pp><lllll><nnnnn><s><r><e>), where

● f = Fill bit: 1 means not really a sending action, but fill only
● pp = Send priority bits in FIFO
● lllll = The location address in the FIFO; only used at specific write
● nnnnn = The Fifo no.
● s = The special bit when set; special actions can be undertaken
● r = RTR bit; when s=0 used as RTR bit; s=1 the RTR enable bit is set
● e = Extension bit; when e=1 the <id ext> contains the 18 LSB of ID

The optional id ext. The problem in Basic is that it only has single precision floating point
variables. So the maximum number which can be calculated without exponential description
is 999999. The extended ID however can go up to 536870911. That is why we advise to split the
ID in 11 (std) and 18 (ext) parts, when the ID is calculated. If ID is used as a constant it is no
problem to go up to 536870911 in ID.

The kind of SEND action is determined by f, s en r bit

● s r f
● 0 0 0 : The standard Tx action: message is added to FIFO and sent
● 0 0 1 : Message is added to FIFO, but not sent yet
● 0 1 0 : As 0 0 0 but with RTR bit set
● 0 1 1 : As 0 0 1 but with RTR bit set
● 1 0 0 : Send only action; all messages in FIFO are sent
● 1 0 1 : Fills the specific location lllll with the message
● 1 1 0 : Sets the RTR enable bit for this FIFO
● 1 1 1 : Reset RTR enable bit; Update priority with pp; Reset FIFO

Since version 1.5 all parameters in CANSEND has been made optional.
0 parameters: Command is interpreted as Send only action; FIFO has to be filled before.
1 parameter: id is specified. type=0; len=8; dim txdata(8); dim txok
2 parameters: id and type are specified; len=8; dim txdata(8); dim txok
3 parameters: id, type and len are specified; dim txdata(8); dim txok
4 parameters: id, type, ext id and len are specified; dim txdata(8); dim txok
5 parameters: id, type, len and the names of data and ok are specified
6 parameters: id, type, ext id, len and the names of data and ok are specified

The Basic variable CANTXERRCNT will be updated if it is used in Basic. It contains the
actual status of the Tx error counter.

Examples:
 10 DIM txdata(8):txdata(0)=1

20 CANOPEN 500
30 CANSEND 100,0,1

The CANbus is activated at 500 kbit/sec and a message with ID 100 and databyte 1 is sent.

10 DIM txdata(8):txdata(0)=1
20 CANOPEN 500
30 CANSEND 100,&H8000,1
40 txdata(0)=2
50 CANSEND 100,&H8000,1
60 CANSEND

Now the messages are set into the FIFO (first one with data 1; second data 2) and after that
sent directly after each other.

2.22 CANSTATUS

Purpose:
Displays the status of the CAN controller

Syntax:
CANSTATUS

Comments:

The control register: Serial no., Port no., Timestamps (on/off), Mode.

The config register: Bitrate, sample point, SJW and no of samples.

The FIFO's are marked T (Tx) or if Rx: _ (not active), + (>1), 1-9 (no of links), 0 (> 9 links).

FIFO status shows available data in the FIFO (for Tx always 1; for Rx 1 if data is not read)

FIFO rxlost shows the FIFO's which have had an overflow (1).

Next line shows the actual values of Rx and Tx error counters. The CAN clock has been added
to this line. For resolution see the value on the top line (in uS).

The status line of the CANOBJECT is included here. 1 HEX byte status for every FIFO:
2 LSB’s: kind of object: 00: timed; 01: dependant object; 10: once disabled; 11: once enabled
Bit 3: 0 for the standard port; 1 for the alternate port
Bits 4 and 5: log to (00: no log; 01: screen; 10 and 11 file #1 or #2)
Bit 6: Basic parameter on/off; Bit 7: Tx/Rx; Bit 8: ON/OFF.

After all objects the standard CANport of the objects is listed (_ if no objects initialised yet).

The name of an optional protocol in the license file is on the next line.

All optional CANIOLINKs are the last lines.

If DIM CANTEST(n) is executed before CANSTATUS the parameters are stored in the
CANTEST array. The number of stored values is dependent on the value of n. See next page
how to interpret the values.

Values of CANTEST in CANSTATUS:

CANTEST(0): 256 * (CAN version * 10) + MSB of serial number
CANTEST(1): LSBs of serial number
CANTEST(2): CAN port (0, 1, 2 or 3)
CANTEST(3): (0:normal; 2:loopback; 3: listen only; 4:configuration;7:all messages)
CANTEST(4): CANCLOCK (0 if timestamps are disabled)
CANTEST(5): Timestamp resolution
CANTEST(6): Bitrate (bits/sec)
CANTEST(7): Sample point (%)
CANTEST(8): Synchronisation Jump Width (1, 2, 3 or 4)
CANTEST(9): No. of samples (1 or 3)
CANTEST(10): LSBs of startaddress FIFOs
CANTEST(11): MSBs of startaddress FIFOs
CANTEST(12): No. of active FIFO locations
CANTEST(13): Total no. of FIFO locations
CANTEST(14): Actual value of Rx error counter
CANTEST(15): Actual value of Tx error counter

CANTEST(16)
……
CANTEST(47): Status of CANOBJECT 0 … 31

CANTEST(48): CAN port of CANOBJECTs

CANTEST(49)
……
CANTEST(70): Name of protocol if available (ASCII values)

CANTEST(71)
……
CANTEST(198): Status of CANIOLINK 0 … 127
 0 if not active otherwise: 10000 +(100 * pin no) + object no

2.23 CANSUB

Purpose:
Jump to a time-based subroutine during a continuous CAN command

Syntax:
CANSUB [timer[,lineno]]

Comments:

CANSUB is used like the SETTICK command. This means a subroutine starting at lineno
is called every time in timer mSec. The interval time of the commands CANLOG,
CANVIEW, CANBRIDGE and CANREPLAY is influenced by the timer specification in
CANSUB. If lineno is not specified or lineno=0 the command only changes this interval
time. Default timer is set to 1000 (1 sec) and the minimum value is 100 mS. The interval
time determines when the busload is calculated and all the other specifications of CANVIEW
are displayed. Also it grabs the input of the keyboard to see if it has to stop the command.

If lineno is also specified it will start the subroutine starting at lineno and will return
to the command which was executing when the call was done and the command CANRETURN
is seen. This means it stays within the command (CANCONTINUE=2) and will not step to the
next command line as does SETTICK with IRETURN and GOSUB with RETURN.

Example:

 10 CANOPEN 500

20 CANSUB 1000,100:’Every 1000 ms execute subroutine at 100
30 DIM canmessno:’Variable gets the actual message counter
40 CANLOG 4
100 PRINT
110 PRINT “No of messages last second:”;canmessno-prevno
120 PRINT
130 prevno=canmessno:’Remember actual no.
140 CANRETURN

The program will print a line every second with the number of messages during the last
second. By using the CANSUB the ESC or Q will not work anymore to stop the logging. Only
CTRL-C will stop the program now.

2.24 CANVIEW

Purpose:
Display an overview of a running CAN network on one line

Syntax:
CANVIEW [format[,fifono[,period[,lineno[,interval]]]]]

Comments:

The parameters which are displayed are: the number of messages, the number of ID’s, the
busload and the error situation. Values are displayed periodically, both over the specific
period and overall. The optional parameter interval can be used to set the measurement
period in ms (default value 1000).

The optional parameters fifono, period and lineno are used in the same way as in
the CANLOG command.
Also the Basic parameters CANPERIOD, CANLINENO, CANTIME, CANMESSNO,
CANCONTINUE, CANLOAD, CANLOADACT, CANLOADPERIOD(n), CANLOADMAX,
CANLOADMAXTIME and CANBLINK can be used in the same way as in the CANLOG
command.

The optional parameter format is used for the format of the line.
The default value 0 displays all value in one line as: <SMlLPTiIcCEO> with:
S: The measurement time in seconds (CANTIME)
N: No of messages (CANMESSNO)
A: Actual busload in the last interval (CANLOADACT)
L: The busload overall (CANLOAD)
M: The maximum busload (CANLOADMAX)
T: Time of maximum busload (CANLOADMAXTIME)
i: The number of different message ID’s in the last interval *
I: The total number of different ID’s *
c: The maximum value of the Rx Error Counter in the last interval
C: The maximum value of RxC overall (CANERRCNT)
E: The total number of errors (in fact the number of increments of the RxC) **
O: The overall number of overflows (CANOVFCNT)

If format has the value 1 to 12 one of the parameters is shown in the order SMlLPTiIcCEO.
Format = 13: Busload graphical: Dynamic scaling with values A, L, and M
Format = 14: Error Counter value graphical: Scale 0 - 136 with values c and C
Format = 15: The values 1 to 12 sequential. Every parameter is displayed during one period.

If DIM CANTEST(15) has been executed before CANVIEW the parameters 1 to 12 are
stored in CANTEST(1) - CANTEST(12). Other values are set to 0. The format is not
relevant in this case. The busload values are multiplied by 10, because the CANTEST values
can only be integers.

* To store the used ID’s the upper memory area of the FIFO space is used as in CANLOG.
Default 30 FIFO’s are free for this purpose. Each FIFO can store 4 ID’s. So a maximum of
120 different ID’s can be stored. If this maximum is exceeded, the value 999 is stored and the
ID read is stopped.

** If the increment of the error counter > 8 the error will probably be caused by the test
system itself and therefore this value is set to the maximum value 9999. The user should check
for the correct physical and datalink settings of the SI2CBB.

2.25 CHDIR

Purpose:
To change from one working directory to another.

Syntax:
CHDIR pathname$

Comments:

Pathname$ is a string expression of up to 63 characters.

To make games the working directory, type the following command:
CHDIR "GAMES"

The special entry “..” represents the parent of the current directory and “.” represents the current
directory.

2.26 CIRCLE

Purpose:
To draw a circle on the screen.

Syntax:
CIRCLE(xcenter, ycenter), radius[,[color][,[F]]]

Comments:

xcenter and ycenter are the x- and y- coordinates of the center of the circle, and radius is
the radius (measured along the major axis) of the circle. The quantities xcenter and ycenter
can be expressions.

color specifies the color of the circle. 0 draws with black color, anything different than 0 draw
with white color.

The F is fill parameter and fills the circle with the color specified in color . If the circle goes
outside the drawing area it's truncated and no error is generated.

Example 1:

10 CIRCLE(100,100), 50
Draws a circle of radius 50, centered at 100x and 100y coordinates.

20 CIRCLE(100,100), 50, 0
Erases the circle drawn with the previous command.

Example 2:

10 CLS ' This will draw 16 circles
20 FOR R=160 TO 0 STEP -10
30 CIRCLE (160,160),R,1
40 NEXT

2.27 CLEAR

Purpose:
To set all numeric variables to zero, all string variables to null. See ERASE for deleting specific
array variables.

Syntax:
CLEAR

Comments:

The CLEAR command:

● Clears all user variables
● Resets the strings

Examples:

CLEAR
Zeroes variables and nulls all strings.

2.28 CLOSE

Purpose:
To terminate input/output to a disk file or a device.

Syntax:
CLOSE #filenumber[,[#]filenumber]...]
CLOSE CONSOLE

Comments:

filenumber is the number under which the file was opened. The association between a
particular file or device and file number terminates upon execution of a CLOSE statement. The
file or device may then be reopened using the same or a different file number. A CLOSE statement
with no file number specified will lead to error.

A CLOSE statement sent to a file or device opened for sequential output writes the final buffer of
output to that file or device.

A CLOSE CONSOLE will close the serial port which is opened for console.

Examples:

250 CLOSE #1
This closes file #1.

300 CLOSE #2, #3
Closes all files and devices associated with file numbers 2, and 3.

2.29 CLS

Purpose:
To clear the screen.

Syntax:
CLS

Comments:

CLS returns the cursor to the upper-left corner of the screen

Examples:

10 CLS
This clears the screen.

2.30 COMLOG

Purpose:
Log data of serial port(s)

Syntax:
COMLOG [#fileno,][format[,period]]

Comments:

#fileno may be 1 or 2. This restriction is due to the fact that the same structure as for
CANLOG is used. If it is greater than 2, it is reset to 0, which means that the log is on screen. If
logging to a file is wished, the file should be opened by the OPEN command before. If this
option is chosen, the format parameter will always be 1, independent of what is on the
command line.

Before the command can be executed also 1, 2, 3 or 4 COM ports should be opened by the
OPEN command. Be careful: the #no should be unique for every port and should not conflict
with the #fileno. Only the Rx lines of the COM ports are relevant. These are on the
following ARDUINO pins: COM1: on D2; COM2: on D6; COM3: on UEXT 4, so not on the
ARDUINO pins and COM4: on the RS232 connector (pin 2) and also on D0 if R2 is mounted
on the Duinomite board (it is not available on the embedded PIC32T795 module). Normally
only 2 ports are selected to monitor a serial connection. Of course the right baud rate must be
given to the serial inputs.

format has 4 possible values (0-3). 0 means ASCII monitoring. This has a special layout: All
data comes on a horizontal line; one for every COM port. If the ASCII value is printable
(32-127) it is presented by the right ASCII character; if it is not printable a ‘.’ is printed. Data
scrolls from right to left. The other possible values are 1 for hexadecimal; 2 for decimal and 3
for binary. In these cases data scrolls in a vertical direction on the screen. Every time data
comes from another serial port a line is inserted with the new COM port.

The command can be stopped by <ESC> or <CTRL-C>. In a program it can also be decided
to run the logging for a certain period. The period parameter can be used for this.

IMPORTANT: All inputs (except COM4: on the RS232 connector) should be protected by
Schottky diodes between 0 and 3.3 Volts.

Example:

10 OPEN “logfile.txt” for output as #1
20 OPEN “COM1:” as #2
30 OPEN “COM2:” as #3
40 COMLOG #1,1,10000
50 CLOSE #1

The serial inputs COM1: and COM2: are used for logging. Data is written to a logfile
“logfile.txt” during 10 seconds.

2.31 CONTINUE

Purpose:
To continue program execution after a break.

Syntax:
CONTINUE

Comments:

Resumes program execution after CTRL-BREAK, or CTRL-C . Execution continues at the point
where the break happened. If the break took place during an INPUT statement, execution
continues after reprinting the prompt.

CONTINUE is useful in debugging, in that it lets you break code, modify variables using direct
statements, continue program execution, or use GOTO to resume execution at a particular line
number.

If a program line is modified, CONTINUE will be invalid.

2.32 COPYRIGHT

Purpose:
To print copyright message.

Syntax:
COPYRIGHT

Comments:

Print copyright message.

SI2-CBB version 2.4 added the changes of DMBasic 2.7. Added, Edited and Deleted Commands
and Functions are mentioned.

2.33 DATA

Purpose:
To store the numeric and string constants that are accessed by the program READ statement(s).

Syntax:
DATA constants

Comments:

constants are numeric constants in any format (fixed point, floating-point, or integer),
separated by commas. Numerical constants can also be expressions such as 5 * 60.

String constants in DATA statements must be surrounded by double quotation marks only if they
contain commas, colons, a keyword (such as THEN, WHILE, etc) or significant leading or trailing
spaces. Otherwise, quotation marks are not needed.

DATA statements are not executable and may be placed anywhere in the program. A DATA
statement can contain as many constants that will fit on a line (separated by commas), and any
number of DATA statements may be used in a program.

READ statements access the DATA statements in order (by line number). The data contained
therein may be thought of as one continuous list of items, regardless of how many items are on a
line or where the lines are placed in the program. The variable type (numeric or string) given in the
READ statement must agree with the corresponding constant in the DATA statement, or a "Type
Mismatch" error occurs.

DATA statements may be reread from the beginning by use of the RESTORE statement.

For further information and examples, see the RESTORE statement and the READ statement.

Example 1:

80 FOR I=1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment reads the values from the DATA statements into array A. After execution,
the value of A(1) is 3.08, and so on. The DATA statements (lines 110-120) may be placed
anywhere in the program; they may even be placed ahead of the READ statement.

Example 2:

5 PRINT
10 PRINT "CITY","STATE","ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,","COLORADO",80211
40 PRINT C$,S$,Z
RUN
CITY STATE ZIP
DENVER, COLORADO 80211

This program reads string and numeric data from the DATA statement in line 30.

2.34 DATE$

Purpose:
To set the current date.

Syntax:
DATE$=v$

Comments:

The date is set to “01-01-2000” at power up. If MOD-RTC (Real-Time-Clock Module) is connected
to UEXT the current date will be set from the read content from MOD-RTC.

v$ is a valid string literal or variable.

v$ can be any of the following formats when assigning the date:

dd-mm-yy
dd/mm/yy
dd-mm-yyyy
dd/mm/yyyy

If v$ is not a valid string, a "Type Mismatch" error results. Previous values are retained.

If any of the values are out of range or missing, an "Invalid date" error is issued. Any previous date
is retained.

To read the actual date, use the function DATE$ as described in chapter 3

2.35 DELETE

Purpose:
To delete program lines or line ranges.

Syntax:
DELETE [line number1][-line number2]
DELETE line number1-

Comments:

line number1 is the first line to be deleted.

line number2 is the last line to be deleted.

MM-BASIC always returns to command level after a DELETE command is executed. Unless at
least one line number is given, an "Invalid syntax" error occurs.

If the line number does not exist "Invalid line number" error occurs.

Examples:

DELETE 40
Deletes line 40.

DELETE 40-100
Deletes lines 40 through 100, inclusively.

DELETE -40
Deletes all lines up to and including line 40.

DELETE 40-
Deletes all lines from line 40 to the end of the program.

2.36 DIM

Purpose:
To specify the maximum values for array variable subscripts and allocate storage accordingly.

Syntax:
DIM variable(subscripts)[,variable(subscripts)]...

Comments:

If an array variable name is used without a DIM statement, a "Array must be dimensioned first"
error occurs.

The maximum number of dimensions for an array is 8.

The minimum value for a subscript is always 0, unless otherwise specified with the OPTION
BASE statement.

An array, once dimensioned, cannot be re-dimensioned within the program without first executing a
CLEAR or ERASE statement.

The DIM statement sets all the elements of the specified arrays to an initial value of zero.

Examples:

10 DIM A(20)
20 FOR I=0 TO 20
30 READ A(I)
40 NEXT I

This example reads 21 DATA statements elsewhere in the program and assigns their values to
A(0)through A(20), sequentially and inclusively.

2.37 DO

Purpose:
To create a loop.

Syntax:
DO [loop statements] LOOP
DO WHILE expression [loop statements] LOOP
DO [loop statements] LOOP UNTIL expression

Comments:

The first structure will loop forever; the EXIT command can be used to terminate the loop or
control must be explicitly transferred outside of the loop by commands like GOTO or RETURN
(if in a subroutine).

The second structure will loop until expression is zero. If expression is nonzero (true),
loop statements are executed until the LOOP statement is encountered. MM-BASIC then returns to
the DO WHILE statement and checks expression. If it is still true, the process is repeated.If it is
not true, execution resumes with the statement following the LOOP statement.

DO WHILE LOOP loops may be nested up to 20 times. Each LOOP matches the most recent DO
WHILE.

An unmatched LOOP statement causes a "LOOP without matching DO" error

DO WHILE LOOP is equivalent to the old WHILE-WEND statement which is also implemented
in MM-BASIC for compatibility.

The third structure does the same as the second one, only the expression is now at the end of the
loop. So the loop statements are executed at least once.

Examples:

10 DO
20 PRINT “HELLO”
30 IF INKEY$ = “q” THEN EXIT
40 LOOP
50 PRINT “DONE”

This example will print “HELLO” until “q” key is pressed.

10 DO WHILE INKEY$ <> “q”
20 PRINT “HELLO”
30 LOOP
40 PRINT “DONE.”

This example does the same as the one before.

10 DO
20 PRINT “HELLO”
30 LOOP UNTIL INKEY$ = “q”
40 PRINT “DONE.”

Again an example for printing “HELLO” until q pressed.

90 'BUBBLE SORT ARRAY A$
100 FLIPS=1
110 DO WHILE FLIPS
115 FLIPS=0
120 FOR N=1 TO J-1
130 IF A$(N)>A$(N+1) THEN SWAP A$(N), A$(N+1): FLIPS=1
140 NEXT N
150 LOOP

Sorting program for array

2.38 DRIVE

Purpose:
Change drive

Syntax:
DRIVE “A:”
DRIVE “B:”

Comments:

Drive “A:” is the virtual drive in the PIC32 internal flash memory

Drive “B:” is the SD card if available.

Drive “B:” is the default drive if the SD card is available.

The SI2-CBB software uses the A-drive for the license file and optional script files.

The size of the A-drive is restricted to 64 KB.

2.39 EDIT

Purpose:
Edit the line ‘line-number’.

Syntax:
EDIT [line_number]

Comments:

line_number is the number of a line existing in the program. If no line number is used this
command will edit the previous entry typed at the command prompt. If a running program has just
terminated with an error this will automatically edit the line that caused the error.

On entering the edit mode the line will be displayed, the cursor placed at the end of the line and the
editing mode set to over-type.

The editing keys are:
LEFT/RIGHT ARROWS Moves the cursor within the line
HOME/END Moves the cursor to the start or end of the line
DELETE Delete the character over the cursor
BACKSPACE Delete the character before the cursor
INSERT Will switch between insert and overtype mode.

Use `ENTER’ to finish editing (even in insert mode). The line is added to the program just as if it
had been typed at the command prompt. If the line number had been changed a new (edited) copy
of the line will be added to memory, if it is unchanged the line will replace ‘line-number’.

When editing a program line the UP-ARROW will switch to the previous line and
DOWN-ARROW to the next line number. When doing this any changes will be automatically saved
(the same as using ENTER) before moving to the next line.

MM-BASIC is always in edit mode when entering data at the command prompt or for the INPUT
and LINE INPUT commands. In these cases the ARROW KEYS can be used to move within the
line to correct errors. If the UP-ARROW key is pressed at the command prompt it will act the same
as EDIT with no line number (edit the last error line or entered command). Subsequent
UP/DOWN-ARROW presses will move through the list of recent entries.

All the editing keys work with Teraterm and Putty (in VT100 mode) so editing can also be
accomplished over a USB or serial link using these terminal emulators or any other VT100
compatible terminal emulator.

The maximum line length that can be edited is 79 chars in VGA mode and 49 chars in composite
mode. If more than this number of characters are entered in over-type mode MM-BASIC will
automatically enter normal text entry mode without the editing functions. If in insert mode any extra
characters will be rejected.

The current line is always the last line referenced by an EDIT statement, LIST command, or
error message.

If line number refers to a line which does not exist in the program, an "Invalid Line Number" error
occurs.

Examples:

EDIT 150
Displays program line number 150 for editing.

2.40 ELSE

Purpose:
Execute one or more statements or jump to another line if a condition is false.

Syntax:
IF … THEN … [ELSEIF …] ELSE …

Comments:

ELSE is described in the IF command

2.41 ELSEIF

Purpose:
Execute one or more statements or jump to another line if a condition is false and another condition
is true.

Syntax:
IF … THEN … ELSEIF … [ELSE …]

Comments:

ELSEIF is described in the IF command

2.42 END

Purpose:
To terminate program execution, close all files, and return to command level.

Syntax:
END

Comments:

END statements may be placed anywhere in the program to terminate execution.

An END statement at the end of a program is optional. MM-BASIC always returns to command
level after an END is executed.

END closes all files.

Example:

520 IF K>1000 THEN END ELSE GOTO 20

Ends the program and returns to command level whenever the value of K exceeds 1000.

2.43 ENDIF

Purpose:
End the multi line IF statements.

Syntax:
IF … THEN … [ELSEIF …] [ELSE …] ENDIF

Comments:

ENDIF is described in the IF command.

2.44 ERASE

Purpose:
To eliminate arrays from a program.

Syntax:
ERASE list of array variables

Comments:

Arrays may be re-dimensioned after they are erased, or the memory space previously allocated to
the array may be used for other purposes.

If an attempt is made to re-dimension an array without first erasing it, an error occurs.

Examples:

200 DIM B(250)
.
450 ERASE A,B
460 DIM B(3,4)

Arrays A and B are eliminated from the program. The B array is re-dimensioned to a 3-column by
4-row array (12 elements), all of which are set to a zero value.

2.45 ERROR

Purpose:
To simulate the occurrence of an error, or to allow the user to define it.

Syntax:
ERROR error$

Comments:

The program execution stops and error$ is displayed as error.

Example:

The following example simulate error 15 (the code for "String too long"):

10 INPUT “Number”;a
20 INPUT “div “;b
30 IF B = 0 THEN ERROR “DIVISION BY ZERO”
40 ELSE PRINT a/b

2.46 EVAL

Purpose:
Execute a statement, which is created in a string

Syntax:
EVAL statement$

Comments:

EVAL is an instruction coming from the scripting language JavaScript. In other languages it
is also called EXEC. It converts a string into a statement. In this way it is possible to execute a
statement, dependent on variables. As Basic is in fact also a scripting language, the interpreter
translates the statement in run time, it is possible to include such a statement in Basic.

For our CAN version of Basic it is very useful to have such a statement. For the CANOBJECT
statement we use the Basic array CANOBJxxDATA, where xx stands for the number of the
object (00 - 31). If we use multiple CANOBJECTs we have to declare all the arrays and when
we want to have the data of one specific CANOBJECT we have to find with IF-THEN or
ON x GOTO/GOSUB statements the right action to take. This is because the xx is in the
variable name and is not one of the variables itself. By using the EVAL statement like EVAL
A$, we can build the A$ string dependent on the CANOBJECT number and in this way we
can DIM multiple CANOBJxxDATA arrays in a FOR-NEXT loop or modify/read the data
of a specific CANOBJECT, specified by an user input.

MMBasic (or DMBasic) translates commands, functions and arithmetic operators into tokens
when a line is entered. At runtime only a tokenized program can be executed. If we would
enter the string in Basic format we would have to tokenize the string before we can execute it.
This is quite inefficient. That is why it is decided that the string we use in the EXEC
command should already be tokenized. The tokens are the ASCII codes 128 - 255.

The structure of a statement is: <command token><space><variable><function
token><variable><function token>.....<0>. The tokens in the string have to be entered by
CHR$(x). So our string would be:
A$=CHR$(command token)+” “+”variable”+CHR$(function
token)+”variable”+CHR$(function token) ….+CHR$(0)

A simple method to get the tokenized translation of a statement is the following:
Temporary add a line 1 in your program, e.g. 1 PRINT “test”
Now type MEMORY and you will get the used memory for program and variables. In our
CAN Basic this command does not only give the size, but also the start of the different areas.
We use the start of the program area, e.g. 0xA000yyyy (yyyy are also two hexadecimal bytes,
which change at every version. Now enter the following line:
FOR x=0 TO 100:PRINT PEEK(&HA000,&Hyyyy+x);:NEXT
The result will be: 0 1 0 1 32 130 32 34 116 101 115 116 34 0 …….
The first characters are: a dummy 0, a 1 for start of line, a 0 for high byte of lineno, a 1 for
low byte of line number (lineno is 1), a 32 for space after lineno, a 130 as token for PRINT, a
32 for space, a 34 for “, 116, 101, 115, 116 as ASCII for test, a 34 for “ and a 0 for end of
statement.
It can also be done directly with MEMORY p. However, values are now in HEX format.

We can build the string as follows: A$=CHR$(130)+” “+CHR$(34)+”test”+CHR$(34).
The first bytes should not be in the string, these are in fact in the EVAL statement itself. The
ending 0 should be included as CHR$(0). Don’t forget the CHR$(34) for “. EVAL A$
will also print test now.

The EVAL statement can also be used to make an unreadable Basic program, by building
strings with only CHR$(x). Only one statement is allowed in the string.

The following pages contain the tokens of the commands and functions. The categories are the
header files from the sources of the DMBasic. These are not relevant in using the tokens in the
EVAL command.

Remark: the token can include the opening “(“. In this case this should not be added in the
EVAL command in this case. However, don't forget the closing “)”.

COMMAND TABLE

<Commands.h>
128 REM 129 LET 130 PRINT 131 ?
132 LIST 133 RUN 134 SAVE 135 LOAD
136 MERGE 137 NEW 138 CLEAR 139 GOTO
140 IF 141 ELSE 142 ELSEIF 143 ENDIF
144 END 145 INPUT 146 TRON 147 TROFF
148 FOR 149 NEXT 150 DO 151 LOOP
152 WHILE 153 WEND 154 ERROR 155 EXIT
156 RANDOMIZE 157 GOSUB 158 RETURN 159 DATA
160 READ 161 RESTORE 162 LINE INPUT 163 DELETE
164 ON 165 DIM 166 ERASE 167 OPTION
168 CONTINUE 169 WRITE 170 MEMORY 171 RENUMBER
172 EDIT 173 POKE 174 AUTO

<Files.h>
175 OPEN 176 CLOSE 177 FILES 178 MKDIR
179 RMDIR 180 CHDIR 181 KILL 182 NAME
183 DRIVE 184 MSDON 185 MSDOFF 186 SDFORMAT

<External.h>
187 PIN(188 SETPIN 189 PWM

<Graphics.h>
190 CLS 191 CIRCLE 192 LINE 193 PSET
194 PRESET 195 LOCATE 196 PIXEL(197 SAVEBMP

<Misc.h>
198 PAUSE 199 TIMER 200 DATE$ 201 TIME$
202 SOUND 203 IRETURN 204 SETTICK 205 COPYRIGHT
206 FONT

<I2C.h>
207 I2CEN 208 I2CDIS 209 I2CSEND 210 I2CRCV
211 I2CSEN 212 I2CSDIS 213 I2CSSEND 214 I2CSRCV
215 NUM2BYTE 216 OLED

<XModem.h>
217 XMODEM

<Setup.h>
218 SETUP

<RTC.h>
219 SLEEP 220 MM.BLANK 221 SDENABLE 222 SDDISABLE
223 SOFTRESET 224 WATCHDOG

<CAN.h>
225 CANOPEN 226 CANCLOSE 227 CANREG 228 CANSTATUS
229 CANFIFO 230 CANFILTER 231 CANMASK 232 CANLINK
233 CANSEND 234 CANRCV 235 CANLOG 236 CANRESET
237 CANVIEW 238 CANREPLAY 239 CANBRIDGE 240 CANOBJECT
241 CANSUB 242 CANRETURN 243 CANSCRIPT 244 CANINT
245 CANPHYS 246 CANIDSCAN 247 CANIOLINK 248 COMLOG
249 EVAL

TOKEN TABLE FOR FUNCTIONS AND OPERATORS

<Functions.h>
128 ABS(129 ASC(130 ATN(131 CHR$(
132 CINT(133 COS(134 EXP(135 FIX(
136 HEX$(137 INSTR(138 INT(139 LEFT$(
140 LEN(141 MID$(142 OCT$ 143 RIGHT$(
144 RND(145 RND 146 SGN(147 SIN(
148 LOG(149 SQR(150 TAN(151 VAL(
152 SPACE$(153 SPC(154 STR$(155 STRING$(
156 FORMAT$(157 UCASE$(158 LCASE$(159 PEEK(
160 MM.VER 161 GETDIM(

<Commands.h>
162 THEN 163 ELSE 164 GOTO 165 GOSUB
166 TO 167 STEP 168 FOR 169 WHILE
170 UNTIL

<Operators.h>
171 ^ 172 * 173 / 174 \
175 MOD 176 + 177 - 178 NOT
179 <> 180 >= 181 => 182 <=
183 =< 184 < 185 > 186 =
187 AND 188 OR 189 XOR

<Files.h>
190 EOF(191 LOC(192 LOF(193 CWD$
194 AS 195 MM.ERRNO 196 INPUT$(197 MM.DRIVE$
198 MM.DRIVE 199 MM.FNAME$

<External.c>
200 PIN(201 GETPIN(

<Graphics.h>
202 PIXEL(203 MM.HRES 204 MM.VRES

<Misc.h>
205 POS 206 TIMER 207 DATE$ 208 TIME$
209 INKEY$ 210 TAB(211 SPI(212 LOAD
213 LOADB 214 DOW

<I2C.h>
215 BYTE2NUM(216 MM.I2C

<Setup.h>
217 MM.SETUP

<RTC.h>
218 MM.SLEEP 219 MM.BLANK 220 MM.BOOTUP

<CAN.h>
221 CANOBJECT(222 CANCLOCK

2.47 EXIT

Purpose:
Exit from DO...LOOP or FOR...NEXT statement.

Syntax:
EXIT
EXIT FOR

Comments:

The program execution will continue after the LOOP or NEXT statement.

Examples:

This example will print “HELLO” until “q” key is pressed.

10 DO
20 PRINT “HELLO”
30 IF INKEY$ = “q” THEN EXIT
40 LOOP
50 PRINT “DONE”

This example will print the numbers from 1 to 5 instead to 10

10 FOR I = 1 TO 10
20 PRINT I; “ “;
30 IF I = 5 THEN EXIT FOR
40 NEXT

2.48 FILES

Purpose:
List files in the current directory on the SD card.

Syntax:
FILES [search-pattern$]

Comments:

The SD card (drive B:) may use an optional search-pattern$. Question marks (?) will match
any character and an asterisk (*) as the first character of the filename or extension will match any
file or any extension. If omitted, all files will be listed.

Example:

FILES “*.BAS”

Will list all files on the SD card with .BAS extension.

2.49 FONT

Purpose:
Select, load or unload a font for the video output.

Syntax:
FONT [#fontnumber, [scale, [reverse/bold]
FONT LOAD filename$ AS #fontnumber
FONT UNLOAD #fontnumber

Comments:

#fontnumber is the font number in the range of 1 to 10, the # symbol is optional.

scale is the multiply factor in the range of 1 to 8 (e.g. a scale of 2 will double the size of a pixel
in both the vertical and horizontal). Default is 1.

If reverse/bold is a number other than zero the font can be displayed in reverse and/or bold
video. Default is no reverse / no bold. Original only reverse was possible and any value other than
0 would result in reverse. In the CAN Basic version the parameter is now masked against 1 and 2.
In principle this means:
 0: no reverse / no bold (default value)
 1: reverse / no bold
 2: no reverse / bold
 3: reverse /bold

There are three fonts built into MM-BASIC:

#1 is the standard font of 10 x 5 pixels containing the full ASCII set.

#2 is a larger font of 16 x 11 pixels also with the full ASCII set.

#3 is a jumbo font of 30 x 22 pixels consisting of the numbers zero to nine and the characters plus,
minus, comma and full stop.

#4 … #10 can be used for custom fonts

Font #1 with a scale of one and no reverse is the default on power up and will be reinstated
whenever control returns to the input prompt. So if you execute FONT statement at command
prompt there will be no font change.

filename$ is file name where the font is contained.

The font is loaded into the memory area used by arrays and strings, use the MEMORY command to
check the usage of this area.

A font file is just a text file containing ordinary characters which are loaded line by line to build the
bitmap of each character in the font. Each character can be up to 64 pixels high and 255 pixels
wide.

Up to 255 characters can be defined.

The first non comment line in the file must be the specifications for the font as follows:
height,width, start, end

Where height and width are the size of each character in pixels, start is the number in the ASCII
chart where the first character sits and end is the last character. Each number is separated by a
comma. So, for example, 16, 11, 48, 57 means that the font is 16 pixels high and 11 wide. The first
character is decimal 48 (the zero character) and the last is 57 (number nine character).

The remainder of the lines specify the bitmap for each character.

Each line represents a horizontal row of pixels. A space means the pixel is not illuminated and any
other character will turn the pixel on. If the font is 11 pixels wide there must be 11 characters in the
line. The first line is the top row of pixels in the character, the next is the second and so on. If the
character is 16 pixels high there must be 16 lines to define the character. This repeats until each
character is drawn. Using the above example of a font 16x11 with 10 characters there must be a
total of 160 lines with each line 11 characters wide. This is in addition to the specification line at the
top.

A comment line has an apostrophe (') as the first character and can occur anywhere. A comment
line is completely ignored, all other lines are significant.

You can unload every loaded font to free the memory.

You cannot unload the built in fonts.

FONT LOADB filename$ AS #fontnumber is a non-documented feature. Using this
command it is possible to load a binary format font. Only system level developers should use this
feature.

Examples:

10 FONT #3,2,1 'doubles scale and reverse video of font #3

10 FONT 3,2,1 'same as above

The following example creates two arrow icons, up and down arrow. Each is 11x11 pixels with the
first (up arrow) in the position of the zero character (0) and the down arrow in the position of
number one (1). To display a up arrow your program would contain this:

10 FONT LOAD “ARROWS.FNT” AS #9 'load the font
20 FONT #9
30 PRINT “0”

'EXAMPLE OF FONT FILE
'ARROWS.FNT
11,11,48,49

 x
 xxxxx
 xxxxxxxxx
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 xxxxx

 xxxxx
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 xxxxxxxxx
 xxxxx
 X

'END OF FONT

2.50 FOR ... NEXT

Purpose:
To execute a series of instructions a specified number of times in a loop.

Syntax:
FOR variable=x TO y [STEP z]
 [statements]
NEXT [variable][,variable...]

Comments:

variable is used as a counter.

x,y, and z are numeric expressions.

STEP z specifies the counter increment for each loop.

The first numeric expression (x) is the initial value of the counter. The second numeric expression
(y) is the final value of the counter.

Program lines following the FOR statement are executed until the NEXT statement is
encountered. Then, the counter is incremented by the amount specified by STEP.

If STEP is not specified, the increment is assumed to be 1.

A check is performed to see if the value of the counter is now greater than the final value (y). If it is
not greater, MM-BASIC branches back to the statement after the FOR statement, and the process
is repeated. If it is greater, execution continues with the statement following the NEXT statement.
This is a FOR-NEXT loop.

The body of the loop is skipped if the initial value of the loop times the sign of the step exceeds the
final value times the sign of the step.

If STEP is negative, the final value of the counter is set to be less than the initial value. The
counter is decremented each time through the loop, and the loop is executed until the counter is less
than the final value.

Nested Loops:
FOR-NEXT loops may be nested; that is, a FOR-NEXT loop may be placed within the context of
another FOR-NEXT loop. When loops are nested, each loop must have a unique variable name as
its counter.

The NEXT statement for the inside loop must appear before that for the outside loop.

If nested loops have the same end point, a single NEXT statement may be used for all of them.

The variable(s) in the NEXT statement may be omitted, in which case the NEXT statement will
match the most recent FOR statement.

If a NEXT statement is encountered before its corresponding FOR statement, a "Cannot find a
matching FOR" error message is issued and execution is terminated.

If a NEXT variable statement is encountered before its corresponding FOR variable statement, a
"FOR without matching NEXT" error message is issued and execution is terminated.

Examples:The following example prints integer values 1 to 10.

20 FOR I =1 TO 10 STEP 1
30 PRINT I;
40 NEXT I
RUN
1 2 3 4 5 6 7 8 9 10

In the following example, the loop does not execute because the initial value of the loop exceeds the
final value. Nothing is printed by this example.

10 R=0
20 FOR S=1 TO R
30 PRINT S
40 NEXT S

In the next example, the loop executes 10 times. The final value for the loop variable is always set
before the initial value is set.

10 S=5
20 FOR S=1 TO S+5
30 PRINT S;
40 NEXT S
RUN
1 2 3 4 5 6 7 8 9 10

In the next example, the NEXT variable is wrong and error occurs.

10 FOR I=1 TO 5
20 PRINT I;
30 NEXT S
RUN
1
Error line 30: Cannot find variable
>

2.51 GOSUB ... RETURN

Purpose:
To branch to, and return from, a subroutine.

Syntax:
GOSUB line number or GOSUB variable
RETURN

Comments:

line number is the first line number of the subroutine.

A subroutine may be called any number of times in a program, and a subroutine may be called from
within another subroutine.

A RETURN statement in a subroutine causes MM-BASIC to return to the statement following the
most recent GOSUB statement. A subroutine can contain more than one RETURN statement,
should logic dictate a RETURN at different points in the subroutine.

Subroutines can appear anywhere in the program, but must be readily distinguishable from the main
program.

To prevent inadvertent entry, precede the subroutine by an END, or GOTO statement to direct
program control around the subroutine.

Added in the CAN version of DMBasic is the possibility to use a variable for the branch. This
variable must be defined as an array by the DIM statement before. The array must be filled with
executable BASIC statements, including the RETURN statement. The filling of the array can be
done by the modified LOAD command.

Examples:

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
40 PRINT "SUBROUTINE";
50 PRINT " IN";
60 PRINT " PROGRESS"
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

The END statement in line 30 prevents re-execution of the subroutine.

This is an example of GOSUB by variable name:

10 DIM sub_rt(100): REM 400 bytes available for subroutine
20 LOAD “sub_rt.bas”: REM .bas is default extension and can
be deleted
30 GOSUB sub_rt
40 PRINT “End program”

The subroutine “sub_rt.bas” has to be developed separately and in principle earlier:

10 PRINT “This is the subroutine”
20 RETURN

Stand-alone this can be tested by GOSUB 10. RUN will generate an error message (RETURN
without GOSUB). Program can be written with SAVE “sub_rt.bas”.

Execution of the main program will give the following result:

RUN
This is the subroutine
End program
>

2.52 GOTO

Purpose:
To branch unconditionally out of the normal program sequence to a specified line number.

Syntax:
GOTO line number

Comments:

line number is any valid line number within the program.

If line number is an executable statement, that statement and those following are executed. If
it is an on-executable statement, execution proceeds at the first executable statement encountered
after line number.

Examples:

10 READ R
20 PRINT "R ="; R;
30 A = 3.14*R^2
40 PRINT "AREA ="; A
50 GOTO 10
60 DATA 5, 7, 12

RUN
R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
Error line 10: No more DATA to read

The "No more DATA to read" advisory is generated when the program attempts to read a fourth
DATA statement (which does not exist) in line 60.

2.53 I2CDIS

Purpose:
Disable the I2C port, which has been enabled as master.

Syntax:
I2CDIS

Comments:

It will also send a stop if the bus is still held.

2.54 I2CEN

Purpose:
Enable the I2C port as master.

Syntax:
I2CEN speed, timeout [,interrupt-line]

Comments:

speed is a value between 10 and 400 (for bus speeds 10kHz to 400kHz).

If you do not need the higher speeds then operating at 100kHz is the safest choice.

timeout is a value in milliseconds after which the master send and receive commands will be
interrupted if they have not completed. The minimum value is 100. A value of zero will disable the
timeout (though this is not recommended).

interrupt-line is optional. It specifies the line number of an interrupt routine to be run when
the send or receive command completes. If this is not supplied, the send and receive command will
only return when they have completed or timed out. If it is supplied then the send and receive will
complete immediately and the command will execute in the background.

The interrupt routine operates the same as a general interrupt on an external I/O pin and must be
terminated with an IRETURN command to return control to the main program when completed.

2.55 I2CRCV

Purpose:
Receive data as master from a slave, with the option to send data first.

Syntax:
I2CRCV address, bus-hold, rcv-len, rcv-buf [, snd-len, snd-data]

Comments:

address is the slave I2C address (note that 10 bit addressing is not supported).

Option is a number between 0 and 3; 1 = keep control of the bus after the command (a stop
condition will not be sent at the completion of the command); 2 = treat the address as a 10 bit
address; 3 = combine 1 and 2 (hold the bus and use 10 bit addresses).

rcv-len is the number of bytes to receive.

rcv-buf is the variable to receive the data - this is a one dimensional array or if rcv-len is 1
then this may be a normal variable. The array subscript does not have to be zero and will be
honoured, also bounds checking is performed.

Optionally you can specify data to be sent first using snd-len and snd-data. These parameters
are used the same as in the I2CSEND command (ie, snd-data can be a constant, an array or a
string variable).

Examples:

I2CRCV &H6F,1,1,BYTE

I2CRCV &H6F,1,5, ARR(0)

I2CRCV &H6F,1,4,ARR(2),3,&H12,&H34,&H56

I2CRCV &H6F,1,3,RCVARRAY(0),4,SNDARRAY(0)

The automatic variable MM.I2C (description at I2CSRCV) will hold the result of the transaction.

2.56 I2CSDIS

Purpose:
Disable the I2C port, which has been enabled as slave.

Syntax:
I2CSDIS

Comments:

2.57 I2CSEN

Purpose:
Enable the I2C port as slave.

Syntax:
I2CSEN address, mask, option, send-int-line, rcv-int-line

Comments:

Enables the I2C module in slave mode.

address is the slave I2C address

mask is the address mask (bits set as 1 will always match)

option is a number between 0 and 3; 1 = allows MM-BASIC to respond to the general call
address. When this occurs the value of MM.I2C will be set to 4; 2 = treat the address as a 10 bit
address; 3 =combine 1 and 2 (respond to the general call address and use 10 bit addresses).

send-int-line is the line number of a send interrupt routine to be invoked when the module
has detected that the master is expecting data.

rcv-int-line is the line number of a receive interrupt routine to be invoked when the module
has received data from the master.

2.58 I2CSEND

Purpose:
Send data as master to a slave

Syntax:
I2CSEND address, option, snd-len, snd-data [,snd-data]

Comments:

Address is the slave I2C address.

option is a number between 0 and 3, 1 = keep control of the bus after the command (a stop
condition will not be sent at the completion of the command); 2 = treat the address as a 10 bit
address; 3 =combine 1 and 2 (hold the bus and use 10 bit addresses).

snd-len is the number of bytes to send.

snd-data is the data to be sent - this can be specified in various ways (all values sent will be
between 0 and 255):

The data can be supplied in the command as individual bytes.
Example:

I2CSEND &H6F,1,3,&H23,&H43,&H25

The data can be in a one dimensional array (the subscript does not have to be zero and will be
honoured, also bounds checking is performed).
Example:

I2CSEND &H6F,1,3,ARRAY(0)

The data can be a string variable (not a constant).
Example:

I2CSEND &H6F,1,3,STRING$

The automatic variable MM.I2C (description at I2CSRCV) will hold the result of the transaction.

2.59 I2CSRCV

Purpose:
Receive data as a slave from the master

Syntax:
I2CSRCV rcv-len, rcv-buf, rcv-d

Comments:

This command should be used in the receive interrupt (ie in the rcv-int-line when the master
has sent some data).

Alternatively a flag can be set in the receive interrupt routine and the command invoked from the
main program loop when the flag is set.

rcv-len is the maximum number of bytes to receive.

rcv-buf is the variable to receive the data - this is a one dimensional array or if rcv-len is 1
then this may be a normal variable. The array subscript does not have to be zero and will be
honoured, also bounds checking is performed.

rcv-d will contain the actual number of bytes received by the command.

I2C Automatic Variable MM.I2C is set to indicate the result of an I2C operation.

0 = The command completed without error.
1 = Received a NACK response
2 = Command timed out
4 = Received a general call address (when in slave mode)

2.60 I2CSSEND

Purpose:
Send data as slave to the master

Syntax:
I2CSSEND snd-len, snd-data [,snd-data]

Comments:

This command should be used in the send interrupt (i.e. in the snd_int-line when the master
has requested data).

Alternatively a flag can be set in the send interrupt routine and the command invoked from the main
program loop when the flag is set.

snd-len is the number of bytes to send.

snd-data is the data to be sent. This can be specified in various ways, see the I2CSEND
commands for details.

2.61 IF

Purpose:
To make a decision regarding program flow based on the result returned by an expression.

Syntax:
IF expression THEN statement [ELSE statement]
IF expression GOTO line number [ELSE statement]

IF expression THEN
 statement(s)
[ELSE
 statement(s)]
[ENDIF]

IF expression THEN
 statement(s)
[ELSEIF expression THEN
 statement(s)]
[ENDIF]

Comments:

If the result of expression is non zero (logical true), the THEN or GOTO line number is
executed.

If the result of expression is zero (false), the THEN or GOTO line number is ignored and the
ELSE, if present, is executed. Otherwise, execution continues with the next executable statement.

A comma is allowed before THEN and ELSE (not before ELSE in the multi line).

THEN and ELSE may be followed by a line number for branching in the single line command
instead of a statement.

THEN and ELSE may also be followed by one or more statements to be executed in the multi line.

GOTO is always followed by a line number.

If the statement does not contain the same number of ELSE's and THEN's, each ELSE is matched
with the closest unmatched THEN. For example:
IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A < > C"
will not print "A < > C" when A < > B.

If an IF...THEN statement is followed by a line number in the direct mode, an "Invalid
line number" error results, unless a statement with the specified line number was previously
entered in the indirect mode.

If the THEN statement is on one line also the ELSE clause must be on that line.

Examples:

In the following example, a test determines if N is greater than 10 and less than 20. If N is within
this range, execution branches to line 200. If N is not within this range, execution continues with
line 110.

100 IF(N<20) and (N>10) THEN 200
110 PRINT "OUT OF RANGE"

This multi line example will check A to be smaller, equal or greater than 5.

100 FOR A = 3 TO 7
110 PRINT A
120 IF A < 5 THEN
130 PRINT "A < 5"
140 ELSEIF A = 5 THEN
150 PRINT "A = 5"
160 ELSE
170 PRINT "A > 5"
180 ENDIF
190 NEXT

2.62 INPUT

Purpose:
To prepare the program for input from the terminal during program execution or to read data items
from a sequential file and assign them to program variables.

Syntax:
INPUT [prompt string;] list of variables
INPUT [prompt string,] list of variables
INPUT #filenumber, list of variables

Comments:

prompt string is a request for data to be supplied during program execution.

list of variables contains the variable(s) that stores the data in the prompt string.

Each data item in the prompt string must be surrounded by double quotation marks, followed by a
semicolon or comma and the name of the variable to which it will be assigned. If more than one
variable is given, data items must be separated by commas.

The data entered is assigned to the variable list. The number of data items supplied must be the
same as the number of variables in the list.The variable names in the list may be numeric or string
variable names (including subscripted variables). The type of each data item input must agree with
the type specified by the variable name.

If more than the list of variables is entered only the first are used and the extra inputs are ignored.
INPUT A,B,C? 1,2,3,4,5
will assign A=1 B=2 C=3 and the 4 and 5 entries will be ignored.

If the variable is number but string is entered then 0 will be assigned to the variable
INPUT A,B,C? 1,hi
will assign A=1 B=0 C=0.

A comma may be used instead of a semicolon after prompt string to suppress the question mark.
For example, the following line prints the prompt with no question mark:
INPUT "ENTER BIRTHDATE",B$

When an INPUT statement is encountered during program execution, the program halts, the
prompt string is displayed, and the operator types in the requested data. When the operator presses
the ENTER key, program execution continues.atement

In INPUT #file number, list of variables file number is the number used when
the file was opened for input.

variable list contains the variable names to be assigned to the items in the file. The data
items in the file appear just as they would if data were being typed on the keyboard in response to
an INPUT statement.

With INPUT #, no question mark is printed, as it is with INPUT.

For numeric values, leading spaces and line feeds are ignored. The first character encountered (not a
space or line feed) is assumed to be the start of a number. The number terminates on a space,
carriage return, line feed, or comma.

If MM-BASIC is scanning the sequential data file for a string, leading spaces and line feeds are
ignored.

If the first character is a double quotation mark ("), the string will consist of all characters read
between the first double quotation mark and the second. A quoted string may not contain a double
quotation mark as a character. The second double quotation mark always terminates the string.

If the first character of the string is not a double quotation mark, the string terminates on a comma,
carriage return, line feed, or after 255 characters have been read.

If end of the file is reached when a numeric or string item is being INPUT, the item is terminated.

Examples:

To find the square of a number:

10 INPUT X
20 PRINT X "SQUARED IS" X^2
30 END
RUN
?

The operator types a number (5) in response to the question mark.
5 SQUARED IS 25

To find the area of a circle when the radius is known:

10 PI=3.14
20 INPUT "WHAT IS THE RADIUS"; R
30 A=PI*R^2
40 PRINT "THE AREA OF THE CIRCLE IS"; A
50 PRINT
60 GOTO 20
RUN
WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.9464

2.63 IRETURN

Purpose:
To return from an interrupt.

Syntax:
IRETURN

Comments:

The IRETURN statement causes MM-BASIC to branch back to the statement where interrupt
occurs.

A subroutine may contain more than one IRETURN statement to return from different points in
the subroutine.

Subroutines may appear anywhere in the program.

2.64 KILL

Purpose:
To delete a file from a disk.

Syntax:
KILL filename$

Comments:

filename$ can be a program file or data file.

KILL is used for all types of disk files.

You must specify the filename's extension when using the KILL command. Remember that files
saved in MM-BASIC are given the default extension .BAS.

If a KILL command is given for a file that is currently open, no error will occurs.

Examples:

The following command deletes the MM-BASIC file DATA1, and makes the space available for
reallocation to another file:

200 KILL "DATA1.BAS"

The following command deletes the MM-BASIC file RAINING from the subdirectory dogs:
KILL "CATS\DOGS\RAINING.BAS"

2.65 LET

Purpose:
To assign the value of an expression to a variable.

Syntax:
[LET] variable=expression
[LET] GRAPH_x = variable (x stands for 1, 2, 3 or 4)

Comments:

The word LET is optional; that is, the equal sign is sufficient when assigning an expression to a
variable name.

The LET statement is seldom used. It is included here to ensure compatibility with previous
versions of BASIC that require it.

When using LET, remember that the type of the variable and the type of the expression must
match. If they don't, an error occurs.
A = “Hello”
Error: Expected a number

Example 1:The following example lets you have downward compatibility with an older system. If
this downward compatibility is not required, use the second example, as it requires less memory.

110 LET D=12
120 LET E=12^2
130 LET F=12^4
140 LET SUM=D+E+F

Example 2:

110 D=12
120 E=12^2
130 F=12^4
140 SUM=D+E+F

In the CAN version of the software a special variable has been defined, GRAPH_x, where x can
stand for 1, 2, 3 or 4. After the equal sign only a variable name is allowed in this case (no
expression). By using these special GRAPH variables, it becomes possible to draw graphics on the
VGA or OLED (LCD) screens. The graphic has the time on the X-axis and the value of the variable
after the equal sign on the Y-axis.
As the update of the graphics is done during the 1 ms interrupt routine, it is decided to keep the
update time as short as possible. That is why it is not allowed to calculate the expression in the
routine. Also the graphs must be initialized in the right order, if more than one graph is used (so
first GRAPH_1, then GRAPH_2, etc.).
The graphs have some default settings, however these can be changed. This is done in a second
special variable, GRAPH_PARAMS_x$ (x standing again for 1, 2, 3 or 4). As can be seen this is a
string with all potential variables for each GRAPH.

The variables are all represented by one character and the expression should be in the form:
parameter=value.
The expressions must be separated by a semicolon. All parameter characters should be given in
lowercase. No spaces are allowed and values are restricted to some limits and should be given in
decimal format (&H is not allowed). X-axis can be from 0 to the maximum horizontal resolution
(MM.HRES) and Y-axis from 0 (top) to the maximum vertical resolution (MM.VRES). The table
below shows all parameters, their default value and the range.

Char Description Default Range

x Start position on X-axis 0 0 - HRES (max HRES for x+l)

y Start position on Y-axis VRES / 2 0 - VRES (max VRES for y+(2 * h)

l Length of X-axis HRES 0 - HRES (max HRES for x+l)

h Height of Y-axis (both pos. and neg.) VRES / 2 0 - VRES / 2 (see y)

t Time in ms between samples on X-axis 100 0 - 3600000 (max 1 hour)

c Color (0/1 b/w on VGA) 1 0 - 1 (if real-time OLED not activ)

 Color (RGB on LCD screen) 65535 0 - 65535 (rt OLED activ) *

s Settings for behavior of graph 0 0 - 15 **

* The real time OLED activ will be set by the Basic command OLED &H8000 - OLED &HFFFF.
The chosen foreground and background colors of the display will not be changed by the color
setting of the GRAPH. The color has to be represented by RRRRRGGGGGGBBBBB, so the 5 MSb’s
for red, the middle 6 bits for green and the 5 LSb’s for blue (see also OLED command).

** The value of s can represented by the following 4 bits ROCL:
L (or the 1 bit): If set, the graph will not only plot the measured value, but will draw a line between
the previous point and this one. This will always give a continuous line.
C (or the 2 bit): If set, the area in which the graph should come will be cleared to before starting
the actual graph. This will take some time.
O (or the 4 bit): If set, the area where this point and the next one also will come is cleared. This
makes sense if also R is set, so overwrite the previous graph. Normally if O is set, C will not be set.
R (or the 8 bit): If set, the graph will restart at the beginning if the end has been reached. If neither
C or O has been set, it will draw over the existing graph.

Example:

10 GRAPH_PARAMS_1$=”x=100;y=100;l=200;h=51”
20 GRAPH_1=a
30 a=50*SIN(TIMER/8)
40 PAUSE 100
50 GOTO 30

This will draw a graph of a sinus on the VGA screen

2.66 LINE

Purpose:
To draw lines and boxes on the screen.

Syntax:
LINE [(x1,y1)]-(x2,y2) [,[color][,B[F]]

Comments:

x1,y1 and x2,y2 specify the end points of a line.

color draw with white if nonzero

B (box) draws a box with the points (x1,y1) and (x2,y2) at opposite corners.

BF (filled box) draws a box (as ,B) and fills in the interior with points.

If x1,y1 is not specified last x,y coordinates are used.

LINE (100,100)-(200,200),1,BF 'draw box 100,100,200,200
LINE -(300,100),1,BF 'draw box 200,200,300,100

Examples:

LINE (MM.HRES \2,0)-(MM.HRES \2,MM.VRES)
Draws a vertical line which divides the screen in half from top to bottom.

LINE (0,MM.VRES \2)-(MM.HRES,MM.VRES \2)
Draws a horizontal line which divides the screen in half from left to right.

LINE (0,0)-(MM.HRES,MM.VRES)
Draws a diagonal line from the top left to lower right corner of the screen.

LINE (10,10)-(20,20),1
Draws a line from 10,10 to 20,20 with white color.

LINE (10,10)-(20,20),0
Draws a line from 10,10 to 20,20 with black color (erases the line drawn above).

10 CLS
20 LINE -(RND(1)*MM.HRES,RND(1)*MM.VRES)
30 PAUSE RND(1)*100
40 GOTO 20

Draw random lines with random speed.

10 CLS
20 FOR I = 1 TO MM.HRES STEP 5
30 LINE (0,0)-(I,MM.VRES)
40 LINE (MM.HRES,0)-(I,MM.VRES)
50 NEXT
60 DO : LOOP UNTIL INKEY$ = “ “

Draws pattern and waits until SPACE is pressed.

2.67 LINE INPUT

Purpose:
To input an entire line (up to 255 characters) from the keyboard or from a sequential disk file into a
string variable, ignoring delimiters.

Syntax:
LINE INPUT [prompt$] [;] [,] string-variable
LINE INPUT #filenumber, string-variable

Comments:

prompt$ is a string literal, displayed on the screen, that allows user input during program
execution.

A question mark is not printed no matter if the delimiter is [;] or [,] unless it is part of prompt$.

string-variable accepts all input from the end of the prompt to the carriage return. Trailing
blanks are not ignored.

filenumber is the number under which the file was opened.

LINE INPUT is almost the same as the INPUT statement, except that it accepts special
characters (such as commas) in operator input during program execution.

If a line-feed/carriage return sequence (this order only) is encountered, both characters are input and
echoed. Data input continues.

A LINE INPUT may be escaped by typing CTRL-BREAK. MM-BASIC returns to command
level and displays '>'.

Typing CONT resumes execution after the LINE INPUT line.

LINE INPUT # is especially useful if each line of a data file has been broken into fields, or if a
BASIC program saved in ASCII mode is being read as data by another program.

Examples:

100 LINE INPUT A$

Program execution pauses at line 100, and all keyboard characters typed thereafter are input to
string A$ until ENTER, CTRL-M, CTRL-C, or CTRL-BREAK is entered.

10 OPEN "INFO.TXT" AS OUTPUT #1
20 LINE INPUT "CUSTOMER INFORMATION?"; C$
30 PRINT #1, C$
40 CLOSE #1
50 OPEN "INFO.TXT" AS INPUT #1
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE #1
RUN
CUSTOMER INFORMATION?

If the operator enters LINDA JONES 234, 4 MEMPHIS
then the program continues with the following:

LINDA JONES 234, 4 MEMPHIS

2.68 LIST

Purpose:
To list all or part of a program to the screen, line printer, or file.

Syntax:
LIST [linenumber][-linenumber]
LIST [linenumber-]
LIST #filenumber, linenumber[-linenumber]

Comments:

linenumber is a valid line number within the range of 0 to 65000.

Use the hyphen to specify a line range. If the line range is omitted, the entire program is listed.

linenumber- lists that line and all higher numbered lines. -linenumber lists lines from the
beginning of the program through the specified line.

Any listing may be interrupted by pressing CTRL-BREAK. If the lines are more than size of the
screen the list will display first lines then “PRESS ANY KEY ...” message will be displaying and
listing will continue after key is pressed for the next screen of lines.

LIST has been extended in the CAN version with an optional # (LIST #filenumber, ...)
E.g. LIST #1,1-100 will save the lines 1-100 to the file opened for output as #1. If the port no.
is included also a line specification has to be included, e.g. LIST #1,1- for the complete
listing. In this way only a part of the total program can be saved.

Examples:

LIST
Lists all lines in the program.

LIST -20
Lists lines 1 through 20.

LIST 10-20
Lists lines 10 through 20.

LIST 20-
Lists lines 20 through the end of the program.

 OPEN “subprog.bas” FOR OUTPUT AS #1
 LIST #1,1000-1999
 CLOSE #1
Saves lines 1000 - 1999 in subprog.bas

2.69 LOAD

Purpose:To load a file from file into memory.

Syntax:
LOAD filename$
LOAD # filename$

Comments:

filename$ is the filename used when the file was saved. If the extension was omitted, .BAS will
be used.

LOAD closes all open files and deletes all variables and program lines currently residing in memory
before it loads the designated program. Second " could be omited.

LOAD # filename$ has been added in the CAN version of the software. It will load a file
which has been saved with the SAVE # option (see SAVE for details).

Examples:

LOAD "DEMO
Loads the file DEMO.BAS.

 LOAD # “DEMO_2.BAS”
Loads the file DEMO_2.BAS which was saved by SAVE #.

2.70 LOCATE

Purpose:
To move the cursor to the specified X,Y pixel position on the screen. Subsequent PRINT command
will place its output at this location

Syntax:
LOCATE X,Y

Comments:

X is the horizontal pixel position with value from 0 to MM.HRES.

Y is the vertical pixel position with value from 0 to MM.VRES.

If X value is over MM.HRES X will be assigned to 0.

If Y value is over MM.VRES Y will be assigned to MM.VRES.

Example:

10 LOCATE 100,100
20 PRINT “HI” ' print HI on position 100,100

2.71 LOOP

Purpose:
To branch back to the beginning of a loop started by DO.

Syntax:
DO [loop statements] LOOP
DO WHILE expression [loop statements] LOOP
DO [loop statements] LOOP UNTIL expression

Comments:

See DO command for further details

2.72 MEMORY

Purpose:
List the amount of memory currently in use. Extended in CAN version with range and video
memory. Also debug options included.

Syntax:
MEMORY [debug parameter]

Comments:

Program memory is cleared by the NEW command. Variable, array and string memory spaces are
cleared by many commands (eg, NEW, RUN, LOAD, etc) as well as the specific commands CLEAR
and ERASE.

The added address range are the logical addresses which can also be accessed by the PEEK and
POKE statements. Please be careful in using them.

Video memory is also included. If the video is disabled in SETUP, Video is replaced by Extended.
This RAM memory can be used in this case by the array _EXTMEM or the string array
_EXTMEM$. The maximum sizes are: DIM _EXTMEM(6475) or DIM _EXTMEM$(100).

Debugging the memory has been made easier than by using PEEK. MEMORY debug
parameter lists ranges of memory. debug parameter can have the following values: p
(program area), v (variable area), e (extended or video area), a (array/string area), r (the complete
RAM area), f (the complete flash area) and d (the drive A: area). Only reading is possible with the
MEMORY command. Writing still has to be done using POKE (not the areas of the options f and d).

Examples:
>MEMORY
 19kB (64%) Program memory [0xA00033B8 - 0xA000ABB8] used
 2kB (14%) Variable memory [0xA000AFE0 - 0xA000E690] used
 26kB (100%) Video memory [0xA000F5AC - 0xA0015AEC] used
 6kB (17%) Arr/Str memory [0xA0015FC0 - 0xA001E7C0] used
>

>MEMORY a
A001-5FC0 00 00 00 00 00 …
A001-5FD0 00 40 C6 45 00 …
………
A001-61B0 00 00 00 00 00 …

Enter any key for next page; <CTRL>-C to stop

2.73 MERGE

Purpose:
Adds program lines from filename$ to the program in memory. Unlike LOAD, it does not clear
the program currently in memory.

Syntax:
MERGE filename$
MERGE # filename$

Comments:

filename$ is a valid string expression containing the filename. If no extension is specified, then
MM-BASIC assumes an extension of .BAS.

The SD card is searched for the named file. If found, the program lines on the SD card are merged
with the lines in memory. After the MERGE command, the merged program resides in memory, and
MM-BASIC returns to the direct mode.

If any line numbers in the file have the same number as lines in the program in memory, the lines
from the file replace the corresponding lines in memory.

MERGE # filename$ has been added in the CAN version of the software. It will merge a file
which has been saved with the SAVE # option (see SAVE for details).

Examples:

MERGE "CODE.BAS"

Merges the file code.bas with the program currently in memory, provided code.bas was previously
saved.

2.74 MKDIR

Purpose:
To create a subdirectory.

Syntax:
MKDIR pathname$

Comments:

pathname$ is a string expression, identifying the subdirectory to be created.

Examples:

MKDIR "SALES\JOHN"

Creates the subdirectory JOHN within the directory of SALES.

2.75 MM.BLANK

Purpose:
To set a time for the video screen saver

Syntax:
MM.BLANK seconds

Comments:

seconds is the time in seconds after which the display goes blank.

MM.BLANK was available in the original DMBASIC 2.7, however not documented.

MM.BLANK can only be used if the screen saver is enabled in SETUP (n option; any value 5-60
is OK)

The value of MM.BLANK is overruled by the value of SETUP if a key is pressed on the keyboard.

MM.BLANK can be used to temporary blank the display

Example:

This example will show MESSAGE on the display during 10 seconds; after that 10 seconds blank;
10 seconds on; 10 seconds off …

10 MM.BLANK 10
20 CLS
30 FONT 2,4
40 PRINT “MESSAGE”
50 PAUSE 20000
60 GOTO 10

2.76 MSDOFF

Purpose:
To switch off the availability of the SDCard file system to the terminal system

Syntax:
MSDOFF

Comments:

MSDOFF was available in the original DMBASIC 2.7, however not documented.

MSDOFF was meant for switching off the terminal system to the SDCard, however the command is
useless, because MSDON, used to switch on the system, will always wait for a key to be pressed.
Even if MSDOFF is situated in an interrupt routine, it will never be activated.

2.77 MSDON

Purpose:
To switch on the availability of the SDCard file system to the terminal system

Syntax:
MSDON

Comments:

MSDON was available in the original DMBASIC 2.7, however not documented.

MSDON will stop all local control until a key is pressed. Meanwhile the terminal system gets
control over the SDCard is if it is an external drive to the system. Read and write are possible.

2.78 NAME

Purpose:
To change the name of a disk file.

Syntax:
NAME oldfilename$ AS newfilename$

Comments:

oldfilename$ must exist and newfilename$ must not exist; otherwise, an error results.

After a NAME command, the file exists on the same disk, in the same disk location, with the new
name.

Examples:

NAME "ACCTS" AS "LEDGER"

The file formerly named ACCTS will now be named LEDGER. The file content and physical
location on the disk is unchanged. If LEDGER exist “Error: Cannot open file“ results.

2.79 NEW

Purpose:
To delete the program currently in memory and clear all variables.

Syntax:
NEW

Comments:

NEW is entered at command level to clear memory before entering a new program. MM-BASIC
always returns to command level after a NEW is executed.

Examples:

NEW
or

980 PRINT "Do You Wish To Quit (Y/N)
990 ANS$=INKEY$: IF ANS$=""THEN 990
1000 IF ANS$="Y" THEN NEW
1010 IF ANS$="N" THEN 980
1020 GOTO 990

2.80 NEXT

Purpose:
To branche back to the first statement in the FOR … NEXT loop.

Syntax:
FOR variable=x TO y [STEP z]
 [statements]
NEXT [variable][,variable...]

Comments:

See description at FOR.

2.81 NUM2BYTE

Purpose:
To convert a float number to 4 separate bytes

Syntax:
NUM2BYTE number, array(x)
or
NUM2BYTE number, variable1, variable2, variable3, variable4

Comments:

MM-BASIC numbers are stored as the C float type and are four bytes in length. The bytes can be
returned as four separate variables, or as four elements of array starting at index x.

NUM2BYTE is very useful at the I2C send and receive commands, but can also be used in other
applications.

2.82 OLED

Purpose:
To control either a MOD-OLED-128x64 display or a MOD-LCD2.8RTP display and touch
screen.

Syntax:
OLED [options[,horizontal offset[,vertical offset]]]
or
OLED options_ext

Comments:

options can have the values of 0 to 255 and is used for the MOD-OLED-128x64. These
options are commented first.

OLED is an addition to the I2C commands, which are standard available in DMBasic 2.7. It
only makes sense if an 128x64 OLED display is connected to the I2C interface. OLED copies
an area of the video display to the OLED display. By default this is the upper left corner. 128
pixels of the total of 480 horizontal and 64 pixels of the total of 432 vertical (PAL video).

Horizontal offset can be given in steps of 32 pixels. 0 up to 11 are the possible values, with 11
being the far right position. To use horizontal offset, the options parameter has to
be filled in (0 by default). Vertical offset can be given in steps of 8 pixels. 0 up to 46 are the
possible values, with 46 being the bottom position. To use vertical offset both
options and horizontal offset have to be filled in (0 by default).

Specifications of the resolution are based on a module using VGA (e.g. Duinomite Mega). If no
VGA is available (e.g. PIC32_T795) resolution is decreased to 304x216. Therefore the possible
offsets are also decreased to a maximum of 5 for horizontal and a maximum of 19 for vertical.
Please be aware of the automatic Carriage Return at a longer text line.

options is the parameter which sets the possible visualisation options of the 128x64 display.
It is done by an eight bit number (0-255) where all bits represent a special feature. The
number can be represented by <arbzfivv>

vv (0-3): visibility 0=normal; 1=low intensity; 2=high intensity; 3=blank
i (4): inverse; pixels are black on a white background
f (8): flip; pixels are vertical flipped
z(16): zoom; vertical pixels are doubled
b(32): blink; display is blinking with fade out
r(64): re-init; initialisation of the display is normally only done once; now re-init and display.
a(128): alternate address: the display uses standard address 3C; by hardware modification
this can be changed to 3D. In this way it is possible to use 2 displays with different areas of the
video display.

options_ext can have a value of 256-65535. In this case horizontal offset and
vertical offset will result in an error message.

OLED is in fact a bad name for the command, because when used with the options_ext
parameter it does not support an OLED display, but an LCD display with touch screen.
However it is decided not to introduce a new command, which would have resulted in more
changes in the original software. Also a change of the name OLED would have resulted in
incompatibility with older Basic programs.

The 8 most significant bits of the OLED extended options parameter can be represented by:
<rlsoipmc>. Whenever a bit is set (1) and the bits left are cleared (0) all bits to the right of this
bit are used as sub parameter for the specific range of values of the options parameter.
<c>onfiguration: This has to be done before any other extended OLED command.
<m>ove: This will copy the upper left corner of the video display to the LCD display
<p>oll: This will poll the touch screen if enabled
<i>nterrupt: This will set an interrupt time to poll the touch screen in the background
<o>ffset: This will set an offset for the touch screen both in x and y direction
<s>caling: This will set a scaling for the touch screen both in x and y direction
<l>ineno: This will set a Basic lineno to jump to if a touch is detected
<r>eal-time: This will convert the LCD display into a real display

The hardware uses two communication ports on the UEXT connector. The LCD display
communicates over the SPI bus. The communication lines (MISO/MOSI) are the same as used
by the SDcard on the Duinomite, only the chip select is different. Therefore the SDcard is
disabled by configuring the LCD display. Whenever the SDcard should be used again, the
display should be disabled and after the use of the SDcard enabled again. Also the TX pin on
the UEXT connector is used. If the serial port is open, it will be closed at initialisation. In
principle it can be opened again as long as the backlight of the display is on (option <l> in the
configuration is zero). So another UEXT module on the bus with a serial interface can be
used. The backlight on/off option can only be used if SJ2 jumper on the module has been
changed.

The LCD display can be used together with a monitor, VGA or composite video. If a VGA
monitor is connected, it will be automatically detected and the resolution will be set to
480x432. If it is not connected the resolution will be decreased to 304x216. By normal use of
the LCD display the resolution will be further reduced to the size of the display. This is
depending on the use as portrait or landscape and also if it is used with double sized pixels. If
used together with an extra monitor one can decide to use the original monitor resolution. In
that case a part of information can be off-screen on the LCD display. During configuration
and move commands the monitor will be switched off for a few seconds.

The touch screen uses the I2C bus. This is the same bus as the original OLED display uses.
Both the OLED display and the touch screen are slaves on the I2C bus and are configured on
different addresses (0x3C or 0x3D for the OLED, 0x4D for the touch screen). So it is possible
to use both interfaces parallel (using both UEXT ports on the Duinomite or using the UEXT
extension module of Olimex). The original OLED command will address the OLED module,
or modules (if both addresses are used) and the extended OLED command will address the
touch screen. It is however not allowed to use the interrupt for polling in this situation.

A little modification has been made in the SPI command. The LCD display uses a D/C
(Data/Command) line, which is placed on the MISO pin of the UEXT connector (the display
itself does not produce any data for the master). The original Basic however wants the MISO
pin (PIN 9) configured as input to use the SPI command. If the MOSI pin (PIN 8) and the
CLK pin (PIN 10) and the Chip Select pin (PIN 19) are defined as output, it is also possible
now to define the MISO pin (PIN 9) as output. In this case the MISO pin becomes the D/C pin
and whenever txdata of the format 0x1yy is given it is interpreted as command yy.

options_ext values 256 - 511 are used for initialisation and setting the basic configuration.
An OLED command with one of these values should be occured before any of the other OLED
commands for the LCD display can be used. As the value of the options_ext parameter
is 9 bits wide, the 8 LSB’s can be used now for further specific settings. For normal use of the
LCD display, including the touch screen, OLED 256 will do the job. If the command is given
in this format in a cold startup situation, the display will be filled with pixels in all kind of
colors. The local video memory will have random values, which are displayed.
The other 8 bits have the following meaning: <btnlrsid>:
<d> or +1: If this bit is set, the display turns off. This will result in a full white screen. The
local video memory will not be changed, so if the configuration command is given again with
the <d> bit cleared, the original display will reappear. It is also possible to change the actual
video memory using other commands, during the display off situation. When turning on again
the new information is displayed.
<i> or +2: If this bit is set, the display is inverted. Black becomes white and also all other
colors will get the inverse value.
<s> or +4: If this bit is set, scrolling of the screen is activated. This only makes sense if the
real-time modus will be used. It will actually scroll the screen if a new line is added at the end
of the screen. One should be careful using this option, because it will take quite some time to
scroll. All pixels above will be reloaded when a scroll occurs, resulting in a delay of about 2
seconds. It can be used during editing of a program, however not during printing of lots of
data in a runtime situation.
<r> or +8: By default the overall resolution will be automatically set to the display. This can
be 240x320, 320*240, 120x160 or 160x120 (see the move command, in which this is
configured). If the <r> bit is set, the original resolution is used. So if no VGA monitor is
connected a non-VGA resolution (304x216) is used and the display resolution is set to
304x216. If a VGA monitor is connected, the resolution will become 480x432. So it can always
be possible that either on the monitor or on the LCD display part of the information will be
off-screen. One can always check the actual resolution with the reserved Basic variables
MM.HRES and MM.VRES.
<l> or +16: If this bit is set, the backlight is turned off. To use this option the display should be
modified. Default by disconnecting the SJ2 jumper from the default position and set it to the
Rx pin (Serial cannot be used). It is also possible to disconnect both positions and connect the
middle position to one of the I/O pins (1 - 22). In basic use the following commands:
OLED_PIN=x: SETPIN x,8: PIN(x)=1 will switch off the backlight; PIN(x)=0 switch on. x is
the PIN no that is used.
<n> or +32: This bit is not used yet
<t> or +64: If this bit is set, the touch screen is deactivated. If the I2C port has already been
enabled by either the OLED command or by the I2CEN command, it will stay enabled.
Only touches of the screen are not detected anymore.
 or +128: This will actually disable the SPI bus for the display and it will automatically
enable the SDcard again. This has always to be done whenever data should be read from or
written to the SDcard. When it is disabled it is not possible to refresh the display, however the
existing information will be unchanged. The touch screen commands will stay active during
an inactive SPI bus, because it is communicating over the I2C bus. When ready reading or
writing the SDcard, one has to enable the display again with a configuration command with
the bit cleared.

options_ext values 512 - 1023 are used for moving (in fact copying) the upper left portion
of the video memory to the display local video memory. In fact the same action as OLED
options does on the OLED display. However with the LCD display we have some extra
features. As the display supports colors the move commands already use a maximum of 8
different colors, meaning RGB (Red Green Blue) either fully open or fully closed. RGB=111
means white, RGB=000 means black. Also offered are double width, double height pixels,
which means characters twice the standard dimensions. Of course one can also choose a
bigger FONT, which can also be added to this. The last extra option is writing only the
foreground pixels. For the move commands we have 9 bits, which can be defined by
<fldrgbRGB>.

<RGB> defines the foreground color. As we normally like a white color on a black
background, it is decided to invert the foreground colors. In this way the options value 512
results in a white text on a black background. So if we would like a red foreground, we should
not set RGB to xxxxxx100, but to xxxxxx011 (so 512+3). As the display is configured to use 16
bit color information (5 bits red, 6 bits green, 5 bits blue) it is decided to give the user the
opportunity to use all colors. This can be done by using the Basic variable LCD_COLORF. If
this variable is defined by giving it a value like LCD_COLORF=&HF800 (full red) the
foreground color information given in the command is overruled. Please keep in mind that
once given the variable a value, the RGB information in the OLED command will be always
overruled. The only way to get rid of this variable is the CLEAR command.

<rgb> defines the background color. Default it is black (000). If we like a red background, we
set it to xxx100xxx (so 512+32). As with LCD_COLORF for the foreground color we can use
the Basic variable LCD_COLORB to set the background color.

<d> defines the double width, double height. So 1 pixel in the original video memory becomes
4 pixels on the LCD screen.

<l> turns the display to landscape instead of portrait. So the normal resolution of 240x320
becomes 320x240. If <d> is on these values are 120x160 and 160x120.

<f> means only foreground pixels are sent to the display. This speeds up the process, especially
when we have only text. Of course we should start with an empty screen (background color),
because otherwise we get a mess. One should consider if using the real time option (described
later) is not a better solution in this situation.

Please keep in mind that starting the real time option does not give you the possibility to
choose a double width/height pixel <d>, nor the landscape option <l>. If they are needed the
move command should be executed first. Colors are not of interest, because they have to be
entered in the real time situation again anyway, also with more depth of each color.

options_ext values 1024 - 32767 are all used for the touch screen. In fact the values are
also organised in groups referring to the MSB:
1024 - 2047: used for polling the touch screen
2048 - 4095: used for setting an interrupt for automatic periodically polling
4096 - 8191: used for setting an offset for x and y values
8192 - 16383: used for setting a scaling for x and y values
16384 - 32767: used for setting a lineno. of a subroutine to be called in case of touch

Whenever the touch screen is enabled by the configuration, two Basic variables are
automatically created: TOUCHX and TOUCHY. Optionally the following Basic variables can
be created by the user: TOUCHX_OFFSET, TOUCHY_OFFSET, TOUCHX_SCALING,
TOUCHY_SCALING and TOUCH_LINENO. This can be done by DIM variable or by
simply giving the variable a value. If a new value is given to the variable in Basic or with an
OLED command (4096 - 32767), it will overrule the previous value.

The resolution of the touch screen is 12 bits, both in X and Y direction. This means that both
TOUCHX and TOUCHY can have a value from 0 to 4095. In practice about 350 on all 4 sides
are off-screen; so the real borders are 350 - 3750. This may vary for every display. The
coordinate 350-350 is in the top left corner and 3750-3750 in the bottom right corner. If the
display has been changed from portrait to landscape by the move command, the X and Y
coordinates have been corrected accordingly.

The 350 - 350 coordinate in the top left corner can be corrected by the offset components.
Both TOUCHX_OFFSET=350:TOUCHY_OFFSET=350 and OLED 4096+350:OLED
6144+350 will change the 350 - 350 coordinate to 0 - 0. So the X-offset can be corrected by
OLED 4096+x and the Y-offset by OLED 6144+y. Minimum (also default) values for x and
y are 0; maximum values 2047. If the value is greater than 350 an area from the left side
and/or top side will result in a value of 0 for TOUCHX and/or TOUCHY.

For many applications it will be easier to have only a few coordinates on the screen instead of
4096x4096. This can be done by introducing a scaling factor. E.g. we want to separate the
whole screen into 4x4 areas. We already measured that we can use 350 - 3750 for both x and y.
By introducing the offset as above we changed this to 0 - 3400. Now we can further correct by
TOUCHX_SCALING=850:TOUCHY_SCALING=850 or OLED 8192+850:OLED
12288+850. This will result in: 0-850=>0; 850-1700=>1; 1700-2550=>2; 2550-3400=>3. So it
is a division by the scaling factor to a fixed value. X-scaling can be done by OLED 8192+x
and y-scaling by 12288+y. Maximum values 4095 (which will always result in 0). Scaling
factor 0 is automatically corrected to 1, preventing dividing by 0.

To start an interrupt subroutine if the screen is touched, one can use the Basic variable
TOUCH_LINENO=lineno or OLED 16384+lineno. Using the OLED alternative the
maximum number is 16387; the Basic variable can go up to 65000. The lineno should exist in
the program otherwise an error will occur. The Basic subroutine has to be ended by the
IRETURN statement.

Whenever the touch screen is activated the coordinates are stored in the local registers of the
touch controller. As long as it does not get a request over the I2C bus from the master, these
values remain in the registers and will not be updated by a new touch. As soon as the master
has requested the values, they can be updated by a new touch. So the master always has to
poll the registers to get the actual data. This can be done in two ways.

The manual polling is done by OLED 1024+jitter time. Every time this command is
given the TOUCHX and TOUCHY are updated if a new touch has occurred. The jitter
time can vary from 0 to 1023 ms. So the command can be OLED 1024 up to OLED 2047.
There will be no new check within this jitter time, if a touch has been detected.

The automatic polling is done based on the ms timer. OLED 2048+period will check every
period in ms for new values of TOUCHX and TOUCHY. period can be 1 up to 2047 ms.
If it is set to 0 (OLED 2048) the check for new values is stopped. As mentioned earlier it is not
allowed to use this method if some other I2C device (e.g. an OLED display) is on the same I2C
bus. This will crash the system.

option_ext values 32768 - 65535 will activate the real time modus of the display. The
option_ext parameter has the syntax: <1rrggbbRRRGGGBBB>. So the MSB of the 16 bit
value is 1; all the other bits are used to set the color, both foreground and background.

Before it is possible to set the display in real time control the configuration and move
commands have to be given. E.g. the optional scroll, resolution fit and inversion are taken
over from the configuration setting and orientation (portrait/landscape) and single/double
pixel size from the move settings. The move color setting is overruled by the color setting in
the options parameter in this real time command.

What happens if the real time command is activated? Writing to the Duinomite video memory
is done pixel by pixel. Also writing to the LCD video memory is done pixel by pixel. By linking
the pixel writing of the LCD video memory directly to the pixel writing of the Duinomite video
memory, we fill the LCD screen simultaneously with the local Duinomite display. Of course we
get extra delay in writing to the local video and the USB terminal by using the real time
option. However for most applications this will not be a problem. Only a command like CLS,
which clears directly the whole video memory, now takes about 1 sec extra to clear also the
LCD video memory. One can change foreground and background colors at any time in the
program by simply giving the real time command again with other color parameters. So every
next character can have another fore- and background color. Also the graphic statements
CIRCLE, LINE, PIXEL and the GRAPH extensions (see LET) can be used in any color,
including the filling of a circle or a box.

The different colors have been extended compared to the move command. We now use 3 bits
per color (red, green, blue) for the foreground and 2 bits per color for the background. This
results in 512 different foreground colors and 64 different background colors. As in the move
command the basic variables LCD_COLORF and LCD_COLORB will overrule the color
settings in the real time command. However keep in mind that just changing the variables
LCD_COLORF and/or LCD_COLORB will not change the colors directly. A new real time
command has to be given to activate the new color(s).

Example:

OLED &H100: ‘initiate the display
OLED &H200+&H100: ‘move to the LCD in landscape
OLED &H8000: ‘activate rt mode; bg black; fg white
LCD_COLORF=&HF800: ‘New foreground color is red
LCD_COLORB=&H001F: ‘New background color is blue
OLED &H8000: ‘New colors are activated.

2.83 ON

Purpose:
To branch to one of several specified line numbers, depending on the value returned when an
expression is evaluated.

Syntax:
ON expression GOTO linenumbers
ON expression GOSUB linenumbers

Comments:

In the ON ... GOTO statement, the value of expression determines which line number in
the list will be used for branching. For example, if the value is 3, the third line number in the list
will be the destination of the branch. If the value is a non-integer, the fractional portion is rounded.

In the ON ... GOSUB statement, each line number in the list must be the first line number of a
subroutine.

If the value of expression is zero or greater than the number of items in the list (but less than or
equal to 255), MM-BASIC continues with the next executable statement.

If the value of expression is negative, or greater than 255, an "Number out of range"
error occurs.

ON x GOSUB variables is an illegal statement and will generate an “Invalid line number”
error.

Examples:

100 IF R<1 or R>4 then print "ERROR":END

If the integer value of R is less than 1, or greater than 4, program execution ends.

200 ON R GOTO 150,300,320,390
210 PRINT “NEXT”

If R=1, the program goes to line 150.
If R=2, the program branches to line 300 and continues from there.
If R=3, the branch will be to line 320.
If R=4, the branch will be to line 390.

2.84 OPEN

Purpose:
To establish input/output (I/O) to a file or allocate a buffer to support serial asynchronous
communications with other computers and peripheral devices.

Syntax:
OPEN filename$ FOR mode AS [#]filenumber
OPEN "COM[n]:[speed[,buf[,int[,lvl]]]][,mode][,FC][,OC]" AS
[#]filenumber
OPEN "COM[n]:[speed[,buf[,int[,lvl]]]][,mode][,FC][,OC]" AS
CONSOLE
OPEN "COM[n]:[speed[,buf[,int[,lvl]]]][,mode][,FC][,OC]" AS REMOTE

Comments:

filename$ is the name of the file 8 characters max with extension .XXX max 3 characters.

mode is a string expression: OUTPUT Sequential output mode, will overwrite existing file with
the same name. INPUT Sequential input mode. APPEND Sequential output mode, but from
position at end of file. If there is no existing file the APPEND option will act the same as the
OUTPUT mode (i.e. the file is created then opened for writing).

filenumber is a number between 1 and 10. The number associates an I/O buffer with a disk file
or device. This association exists until a CLOSE or CLOSE file number statement is executed.

The INPUT, LINE INPUT, PRINT, WRITE and CLOSE commands as well as the EOF() and
INPUT$() functions all use filenumber to identify the file being operated on. See also
OPTION ERROR and MM.ERRNO for error handling.

More than one file can be opened for input at one time with different file numbers. For example, the
following statements are allowed:
OPEN "TEMP.TXT" FOR INPUT AS #1
OPEN "TEMP.TXT" FOR INPUT AS #2

However, a file may be opened only once for output or appending. For example, the following
statements are illegal:
OPEN "TEMP.TXT" FOR OUTPUT AS #1
OPEN "TEMP.TXT" FOR OUTPUT AS #2

Be sure to close all files before removing the SD card (see CLOSE).

When a disk file is opened for APPEND, the position is initially at the end of the file. PRINT then
extends the file.
If the file is opened as INPUT, attempts to write to the file result in "Cannot find file"
errors.
If the file is opened as OUTPUT, attempts to read the file result in "Cannot read from file"
errors.
Opening a file for OUTPUT or APPEND fails, if the file is already open in any mode.

COM[n] is a valid communications device: com1: com2: com3: com4:

The OPEN “COMx:” command has been edited in the CAN version of the software. A lot of
errors in the code and the documentation has been solved.

com1: RX is Arduino.D2 or GPIO.13;

TX is Arduino.D3 or GPIO.14;
RTS is Arduino.D4 or GPIO.15 (if FC is used);
CTS is Arduino.D5 or GPIO.16 (if FC is used);

com2: RX is Arduino.D6 or GPIO.17;
TX is Arduino.D7 or GPIO.18;

com3: RX is UEXT.4;
TX is UEXT.3;

com4: RX is RS232. Rx if R2 is mounted also Arduino.D0 or GPIO.11;
TX is RS232. Tx if R3 is mounted also Arduino.D1 or GPIO.12;
RTS and CTS are available on the Arduino Con1 on the Duinomite MEGA. Unfortunately
the internal UART does not have external RTS and CTS pins. So if they have to be used
(FC activated) it has to be done in the application software.

speed is a literal integer specifying the transmit/receive baud rate. The default is 9600 bps.

com1: and com2: are implemented with bit-bang by MM-BASIC and maximum speed is 19200
bps,com3: and com4: are real UARTs and maximum speed is 8 000 000 bps (speed over 115200 bps
is not reliable in practice).

buf is the buffer size used for receive and transmit, the same value for both of them. The default
value is 128 characters. The minimum value is 8. There is no maximum defined, however the buffer
is taken from the Array/String memory. So a value of 10000 means 20k, or 57% of this memory. If
buf has to be specified also baud must be specified.

int is the line number of the interrupt routine which is called whenever a number of characters,
specified by lvl has been reached. If int has to be specified also baud and buf must be
specified.

lvl is the level of the buffer (no. of characters) which has to be reached before the interrupt
routine starts. The default value is 1. The maximum value of course buf. If lvl has to be
specified also baud, buf and int must be specified.

OC will set the output of the TX and RTS on COM1: to Open Collector. This parameter is case
sensitive and should always be the last parameter in the command string.

FC enables flow control on com1: or on com4: (see restriction above). This parameter is case
sensitive and should be the last or the one before OC in the command string.

mode is new in CAN versions. It specifies an important lack in the original DMBasic specification.
The serial communication specification has a variable length of data bits and stop bits. Also a
parity can be defined. The original DMBasic always uses the most used mode: 8 databits, no parity,
1 stop bit. mode is now defined as a 3-digit number. The first digit specifies the number of data
bits (5 -9), the second one the parity (0 = no parity; 1=odd; 2=even) and the last one the number of
stopbits (1-2). So the default value of mode is 801. mode should always be the last parameter or
the one directly before FC or OC.

If an illegal value is given for mode it will be ignored and the value will probably be interpreted
as value for one of the parameters earlier in the string. An exception is the number of data bits in
the COM3: and COM4: specification. These ports are linked to internal UART channels in the CPU
and these UARTs only accept values 8 and 9 as the number of databits. So an error message is the
result if a value of 5, 6 or 7 is given.

If parity in mode is set to odd or even, two Basic variables are created. The first one is
COM_PARITY_REPLACE. The default value of this parameter is -1. This means the received
character gets the wrong value in the buffer, so it is not replaced. If COM_PARITY_REPLACE has
been changed in Basic (e.g. to 255), the character will get this value (0 -255). The second Basic
variable is COM_PARITY_ERRORS. This is the counter of parity errors. It will be incremented by
1 at every parity error. In Basic it can be read and also be reset by COM_PARITY_ERRORS=0. It
is also reset at every new OPEN command.

If the number of data bits is 9, parity is set to no. Two Basic variables are created. The first one
COM_BIT9_VALUE has the value of 0 or 1 of the ninth bit. It had to be separate from the other 8
bits, because Basic cannot handle 9 bit characters. So if you want to transmit a value with the ninth
bit 1, the following statements should be given: COM_BIT9_VALUE=1:PRINT CHR$(x);
where x contains the ASCII value of the 8 lower bits. After the transmit, the bit 9 value is
automatically set to 0 again. Receiving is more difficult, because the 8 bits are placed in the buffer,
however the COM_BIT9_VALUE can continuously vary between 0 and 1. If the second variable
COM_BIT9_ADDRESS is on the default value of -1, it will work this way and only very slow
communication will be possible, character by character. However the nine data bits mode is mostly
used in RS485 communication and a message with the ninth bit set to 1 means the address of the
active node is sent. If COM_BIT9_ADDRESS has a value of 0 - 255, this will be the address of
this node. If it receives the message with the ninth bit set and its address, it will be set open for the
further datastream. In this case the COM_BIT9_VALUE will get the value of 1 and will stay on
that value as long as no other address has been given (unfortunately this only works on COM1: and
COM2:). As soon as a new address message has been received with another address, it will stop
and refuse the following messages and the COM_BIT9_VALUE will get the value of 0.

A communications device may be opened to only one filenumber at a time.
If you try to open com other than com1:- com4: "Invalid syntax" error will occur, if you try to
open already opened filenumber "COMx is already open" error will occur.
When the port filenumber is opened the port can be written to and read from using any
commands or functions that use a file number.

A serial port can be opened with AS CONSOLE. In this case any data received will be treated the
same as keystrokes received from the keyboard and any characters sent to the video output will also
be transmitted via the serial port. This enables the remote control of MMBasic via a serial
interface.

A serial port can be opened with AS REMOTE. In fact this will also set the port as console,
however it is assumed that a SI2-ESP is connected to this port. If this is not the case an error will
result.

The manual of the SI2-ESP in combination with the SI2-CBB can be found here. This describes the
functionality and how it can be activated and used in Basic. The AS REMOTE option is a way to
perform all Basic actions in one single Basic command.

Before the OPEN “COMx:” AS REMOTE command can be executed a string called
REMOTE_PARAM$ has to be created. If this has not been done an error message is the result. All
parameters, except BR (bitrate), STATUS and START are allowed in this string. Parameters are
separated by a ‘;’. In this string at least one of the HTTP or TELNET server or client should be
activated (HS, HC, TS or TC set to 1), otherwise an error occurs.

A second string REMOTE_PARAM_2$ is optional. After the execution of the commands in
REMOTE_PARAM$ the commands in this string are executed. Also here START is forbidden (this
will automatically be executed after all the commands in both strings). REMOTE_PARAM_2$ can
be used as an extension of REMOTE_PARAM$ but more likely it is used for only STATUS or
BR=new bitrate. In this case it is not allowed to add more parameters in the string.

REMOTE_PARAM_2$=”STATUS” will print the list of settings (VGA + USB) in the SI2-ESP after
the execution of the commands of REMOTE_PARAM$.

REMOTE_PARAM_2$=”BR=xxxxx” will change the bitrate on the serial ports of both SI2-CBB
and SI2-ESP to xxxxx, assuming it is a legal bitrate. The original bitrate of the SI2-ESP is set to
19200 and also the com port of the SI2-CBB is started at 19200 (not 9600 which is the default value
if no speed is given).

The parameter Suppress Text (ST) can be set to 1, however the firmware will reset it, because it
needs the response of the SI2-ESP to detect that the commands are executed successfully and the
SI2-ESP is available for remote access.

If the command OPEN “COMx:” AS REMOTE (x is 1, 2, 3 or 4; don’t include any bitrate or
other settings) executes without any error, the remote access should be possible.

http://www.si-kwadraat.nl/si2-cbb/manuals/en/remote.pdf

Examples:

In the following, COM1 is opened for communications with all defaults: speed at 9600 bps, no
parity, eight databits, and one stop bit on port 1.

10 OPEN "COM1:" AS 1

In the following, COM1 is opened for communications at 2400 bps on port 2.

20 OPEN "COM1:2400" AS #2

In the following, COM1 is opened for asynchronous I/O at 1200 bits/second on port 1. 8 databits,
odd parity and 2 stopbits are to be produced or checked.

10 OPEN "COM1:1200,812" AS #1

In the following all specifications are given. COM1 is opened at 9600 bits/second, the buffers have
been extended to 256 bytes, an interrupt routine at line 1000 is called if the buffer is half full (128
bytes), the mode is: 8 databits, no parity, 1 stopbit, flowcontrol is enabled and the Tx and RTS
outputs are set to open collector.

10 OPEN "COM1:9600,256,1000,128,801,FC,OC" AS #1

In the following, COM3 (the UEXT port) is opened for remote access through a router, called
remote with password hello on IP address 192.168.1.60 as an HTTP server (on the standard port
80). The serial bitrate is changed from the default 19200 to 115200.

10 REMOTE_PARAM$=”SS=remote;PW=hello;IP=192.168.1.60;HS=1”
20 REMOTE_PARAM_2$=”BR=115200”
30 OPEN “COM3:” AS REMOTE

2.85 OPTION

Purpose:
To declare some behavior of the system

Syntax:
OPTION BASE n
OPTION ERROR CONTINUE
OPTION ERROR ABORT
OPTION PROMPT prompt$
OPTION Fnn string$
OPTION VIDEO ON/OFF
OPTION USB ON/OFF/DISCONNECT
OPTION CTRLC CONTINUE
OPTION CTRLC ABORT

Comments:

In OPTION BASE n can n be 1 or 0. The default base is 0.

If the statement OPTION BASE 1 is executed, the lowest value an array subscript can have is 1.

An array subscript may never have a negative value.

OPTION BASE gives an error only if you change the base value. This allows chained programs to
have OPTION BASE statements as long as the value is not changed from the initial setting.

You must code the OPTION BASE statement before you can define or use any arrays. If an
attempt is made to change the option base value after any arrays are in use, an error results.

The OPTION ERROR CONTINUE will cause MM-BASIC to ignore file related errors. The
program must check the variable MM.ERRNO to determine if and what error has occurred.

The OPTION ERROR ABORT sets the normal behavior (ie, stop the program and print an error
message). The default is ABORT.

OPTION ERROR only relates to errors reading or writing from the SD card, it does not affect the
handling of syntax and other program errors.

In the following example if “123.TXT” exists on the SD card 0 will be printed. If “123.TXT” does
not exist 6 will be printed (“Cannot find file”)

10 OPTION ERROR CONTINUE
20 OPEN "123.TXT" FOR INPUT AS #1
30 PRINT MM.ERRNO

prompt$ in OPTION PROMPT prompt$ can be an expression which will be evaluated when
the prompt is printed.

Maximum length of the prompt string is 48 characters. The prompt is reset to the default (“> “) on
power up but you can automatically set it by saving the following example program as
“AUTORUN.BAS” on the internal flash drive A:

10 OPTION PROMPT “MY PROMPT: “
20 NEW

Added in CAN version:

OPTION VIDEO OFF: This disables the video output; Arduino D8 and D9 are available as
standard I/O pins, logical PIN(19) and PIN(20). Last one is still connected to the yellow LED
onboard.

OPTION VIDEO ON: This enables the video output again.

OPTION USB OFF: Disables the USB output

OPTION USB ON: Enables the USB output

OPTION USB DISCONNECT: Disables USB completely (also input); ON enables again.

OPTION CTRLC CONTINUE / OPTION CTRLC ABORT: Like OPTION ERROR this option
determines what will happen when CTRL-C is entered by the user. Default it will stop executing the
program (ABORT), however sometimes it is better to disable this control by the user (CONTINUE).

Examples:
Next example changes the prompt as in APPLE]:

OPTION PROMPT “]”

This is also valid prompt:

OPTION PROMPT TIME$+“ : ”
or

OPTION PROMPT CWD$+“ : ”

Fnn in OPTION Fnn string$ is the function key F1 to F12. Maximum string length is 12
characters.

string$ can also be an expression which will be evaluated at the time of running the OPTION
command. This is most often used to append the ENTER key (chr$(13)), or double quotes
(chr$(34)).

Normally these commands should be included in an “AUTORUN.BAS” file (see OPTION
PROMPT for an example).
Examples:

OPTION F1 “RUN” + CHR$(13)
OPTION F2 “SAVE ” +CHR$(34)

2.86 PAUSE

Purpose:
Will halt execution of the running program for number milliseconds.

Syntax:
PAUSE number

Comments:

The maximum value of number is 4294967295 (about 49 days).

Examples:
Next code blink LED which anode (+) is connected to Arduino.A0 and cathode (-) is connected to
GND.

10 SETPIN 1,8'set A0 as Digital output
20 DO 'do loop
30 PIN(1) = 1 'switch ON the LED
40 PAUSE 500 'wait ½ second
50 PIN(1) = 0 'switch OFF the LED
60 PAUSE 500 'wait ½ second
70 LOOP 'loop forever

2.87 PIN

Purpose:
To set an output to a value.

Syntax:
PIN(n) = value

Comments:

For a PIN() configured as digital output this will set the output to low if value is zero or high
if value is non zero. You can set an output high or low before it is configured as an output and
that setting will be the default output when the SETPIN command takes effect.

See the function PIN() for reading from a pin and the command SETPIN for configuring it.

Extensions in the CAN version of DMBASIC:

The PIN reference is extended by a range. To use this n has to be 10000 up. The format is:
1xxyy, where xx is the first PIN in the range and yy the last one. The command PIN(1xxyy)=z
can be used now.

If y in SETPIN x,y is set to 18, 19, 28 or 29, value is interpreted as value for PWM. See
also the description of PWM. PIN(1xxyy)=z is not supported in this case.

Examples:

Next code blink LED which anode (+) is connected to Arduino.A0 and cathode (-) is connected to
GND.

10 SETPIN 1,8 'set A0 as Digital output
20 DO 'do loop
30 PIN(1) = 1 'switch ON the LED
40 PAUSE 500 'wait ½ second
50 PIN(1) = 0 'switch OFF the LED
60 PAUSE 500 'wait ½ second
70 LOOP 'loop forever

2.88 PIXEL

Purpose:
To display a point at a specified place on the screen.

Syntax:
PIXEL (x,y) = value

Comments:

(x,y) represents the coordinates of the point.

value if zero the point is with black color otherwise with white.

See also function PIXEL(x,y) which returns the value of a pixel with coordinates (x,y).

Coordinate values can be beyond the edge of the screen.

(0,0) is always the upper-left corner and (MM.HRES, MM.VRES) is the lower-right corner.

Example 1:
The following draws a diagonal line from (0,0) to (100,100).

10 CLS
20 FOR I=0 TO 100
30 PIXEL(I,I)=1
40 NEXT

Example 2:
The following clears out the line by setting each pixel to 0.

50 FOR I=100 TO 0 STEP -1
60 PIXEL(I,I) = 0
70 NEXT I

2.89 POKE

Purpose:
To write (poke) a byte of data into a memory location.

Syntax:
POKE hiword,loword,byte

Comments:

hiword is the upper 16 bit of the memory address.

loword is the low 16 bit of the memory address.

Byte must be within the range of 0 to 255.

The PIC32 maps all control registers, flash (program) memory and volatile (RAM) memory into a
single address space. The PIC32MX7XX Family Data Sheet lists the details of this address space
while the source code will provide the symbolic names used in the firmware and the .map file
(produced after a successful compile) will list the addresses of these symbols. These addresses will
change with each version of the firmware so programs should use the predefined variable MM.VER
to determine the currently running version.

This command is for expert users only.

If you use this facility to access an invalid memory address the MIPS CPU will throw an exception
which causes the processor to reset and clear all memory. To see this effect try POKE 0,0,0.

The complementary function to POKE is PEEK. The argument to PEEK is an address from which
a byte is to be read.

POKE and PEEK are useful for efficient data storage, loading assembly language subroutines, and
for passing arguments and results to and from assembly language subroutines.

2.90 PRESET

Purpose:
To clear a point at a specified place on the screen. Please for new code do use PIXEL(x,0).

Syntax:
PRESET(x,y)

Comments:

(x,y) represents the coordinates of the point.

Coordinate values can be beyond the edge of the screen.
(0,0) is always the upper-left corner and (MM.HRES, MM.VRES) is the lower-right corner.

Example:
The following clears out the line by setting each pixel to 0.

50 FOR I=100 TO 0 STEP -1
60 PRESET(I,I)
70 NEXT I

2.91 PRINT

Purpose:
To output a text to the screen, file or com port.

Syntax:
PRINT [#filenumber,][list of expressions][;,]
? [#filenumber,][list of expressions][;,]

Comments:

If list of expressions is omitted, a blank line is displayed.

If list of expressions is included, the values of the expressions are displayed. Expressions
in the list may be numeric and/or string expressions, separated by commas, spaces, or semicolons.

Stringconstants in the list must be enclosed in double quotation marks.

A semicolon (;) at the end of the expression list will suppress the automatic output of a carriage
return/ newline at the end of a print statement.

A question mark (?) may be used in place of the word PRINT.

When numbers are printed on the screen, the numbers are always followed by a space. Positive
numbers are preceded by a space. Negative numbers are preceded by a minus (-) sign.
Single-precision numbers are represented with seven or fewer digits in a fixed-point or integer
format.

Integers (whole numbers) are printed without a decimal point while fractions are printed with the
decimal point and the significant decimal digits. Large numbers (greater than six digits) are printed
in scientific format.

The function FORMAT$() can be used to format numbers. The function TAB() can be used to
space to a certain column and the string functions can be used to justify or otherwise format strings.

filenumber is the number used when the file was opened for OUTPUT or APPEND.

In the CAN version of DMBasic the functionality is not changed. However a bug in version 2.7 has
been corrected. PRINT, but also WRITE, INPUT, LINE INPUT, MEMORY and LIST can write
larger amounts of data to the USB buffer. If these commands write data and the interrupt of USB
comes to transfer the data to the terminal port, sometimes data is written two times. In the CAN
version we synchronized the buffer input and output. This was also necessary for all CAN
commands which transfer data to the USB port.

Examples:
10 X$= “---”
20 PRINT X$"MONTHLY REPORT" X$
RUN
---MONTHLY REPORT---

The ',' will space up to 10 characters.

10 PRINT 1,2,3,4,5,6,7,8,9,10
RUN
1 2 3 4 5 6 7 8 9 10

10 PRINT #1, A

0 is the result in the file, because A did not get a value yet.

10 A=26
20 PRINT#1, A

26 is the result in the file

10 A=26
20 PRINT#1, "A"

A is the result in the file, because A is interpreted as string.

If double quotation marks are required within a string, use CHR$(34)(the ASCII character for
double quotation marks).

100 PRINT #1,"He said,"Hello", I think"
Result: He said, 0, I think, because the machine assigns the value 0 to the variable "Hello."

100 PRINT #1, "He said, "CHR$(34) "Hello,"CHR$(34) " I
think."

Result: He said, "Hello," I think

10 A$="12345": B$="67890"
20 PRINT#1, A$, B$

gives a file image of: 12345 67890

30 PRINT#1, A$; B$
gives a file image of: 1234567890

2.92 PSET

Purpose:
To display a point at a specified place on the screen. Please for new code do use PIXEL(x,1).

Syntax:
PSET(x,y)

Comments:

(x,y) represents the coordinates of the point.

Coordinate values can be beyond the edge of the screen.
(0,0) is always the upper-left corner and (MM.HRES, MM.VRES) is the lower-right corner.

Example:

The following draws a diagonal line from (0,0) to (100,100).

10 CLS
20 FOR I=0 TO 100
30 PSET(I,I)
40 NEXT

2.93 PWM

Purpose:
To generate a flexible PWM output on a digital output

Syntax:
PWM [<pin>[,<period 1>[,<period 0>]]]

Comments:

PWM converts the digital output pins to PWM outputs. A maximum of 8 PWM outputs can be
created this way. The clock which is used for the PWM outputs is based on the 1 ms interrupt
of the Basic language. This is a relative low frequency, however if a higher frequency would be
used the overall system performance would be decreased. Also the CANOBJECT messages
and the CANIOLINKs are based on this interrupt, so using both PWM and CANOBJECT can
influence the real-time behaviour of the system.

To actually use the PWM command on one or more pins, the used pins should be set to digital
output with either SETPIN x,8 (standard) or SETPIN x,9 (open collector).

PWM without any parameters or PWM 0, y,z clears all PWM settings. PWM x,0,0
clears PWM setting of PIN x. This setting is free for any other PIN now.

PWM x,y,z is the normal use of the command. PIN x will be set to 1 during y msec and
after that to 0 during z msec. The range of x is 1 - 20 (20 being the on-board yellow LED).
The range of y and z is 0 - 4095. Using both y and z gives the option to choose between
high speed inaccurate and low speed accurate.

PWM x,y or PWM x,y,0 are pre-defined options for PWM x,y,z. It will use y as a
percentage value of full scale. E.g. PWM x,10 is the same as PWM x,10,90 and PWM
x,70 as PWM x,70,30. Any value of y>100 will result in y=100

In the situation above PWM x,50 will set the output high during 50 ms, after that low
during 50 ms, then again high during 50 ms, etc. In many situations we prefer a possible
switching every 1 ms. We would like PWM x,50 to result in 10101010….
The signal will be following small changes more smoothly and the low pass filter at the output
can be set to a higher frequency. To achieve accuracies of 1 promille we need a period of 1
second instead of 100 ms. This should also be possible using the percentage. To use these
options above it is decided to give the z-parameter two special values. PWM x,y,10000 is
in principle the same as PWM x,y, however by placing the 1’s and 0’s smoothly over the 100
ms period. PWM x,y,100000 will do the same however over the 1 second period. So both
PWM x,50,10000 and PWM x,500,100000 will result in the above 10101010…. as
described above.
It has been decided to use these options also directly within the SETPIN statement.
SETPIN x,18 will use PIN(x)=y as PWM x,y,10000
SETPIN x,19 does the same with OC output
SETPIN x,28 will use PIN(x)=y as PWM x,y,100000
SETPIN x,29 does the same with OC output

<CTRL-C> will stop all PWMs and set the outputs to 0.

2.94 RANDOMIZE

Purpose:
To reseed the random number generator.

Syntax:
RANDOMIZE [expression]
RANDOMIZE TIMER

Comments:

If expression is omitted, MM-BASIC will generate error “Invalid syntax”

If the random number generator is not reseeded, the RND() function returns the same sequence of
random numbers each time the program is run.

To change the sequence of random numbers every time the program is run, place a RANDOMIZE
statement at the beginning of the program, and change the argument with each run. One good way
to do this is use the TIMER function.

RANDOMIZE TIMER

Example:

10 RANDOMIZE TIMER
20 FOR I=1 to 5
30 PRINT RND(1)*100;
40 NEXT I

2.95 READ

Purpose:
To read values from a DATA statement and assign them to variables.

Syntax:
READ list of variables

Comments:

A READ statement must always be used with a DATA statement.

READ statements assign variables to DATA statement values on a one-to-one basis.

READ statement variables may be numeric or string. If DATA value is string but you attempt to
read number "Expected a number" error results. The opposite is acceptable i.e. DATA value
to be number but to read it in string variable.

A single READ statement may access one or more DATA statements. They are accessed in order.

Several READ statements may access the same DATA statement.

If the number of variables in list of variables exceeds the number of elements in the
DATA statement(s), an "No more DATA to read" error occurs.

If the number of variables specified is fewer than the number of elements in the DATA
statement(s), subsequent READ statements begin reading data at the first unread element. If there
are no subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement.

Examples:

10 DATA 1, 2, 3, “A”, ”B”, ”C”
20 READ V1, V2, V3, S1$, S2$, S3$
30 PRINT V1, V2, V3
40 PRINT S1$, S2$, S3$
RUN
 1 2 3
A B C

10 DATA 11, 22, 33
20 READ A$, B$, C$ 'strings are read with numbers as DATA
30 PRINT A$; B$; C$
RUN
112233

2.96 REM

Purpose:
To allow explanatory remarks to be inserted in a program.

Syntax:
REM[comment]
'[comment]

Comments:

REM statements are not executed, but are output exactly as entered when the program is listed.

Once a REM or its abbreviation, an apostrophe ('), is encountered, the program ignores everything
else until the next line number or program end is encountered.

REM statements may be branched into from a GOTO or GOSUB statement, and execution
continues with the first executable statement after the REM statement. However, the program runs
faster if the branch is made to the first statement.

Remarks may be added to the end of a line by preceding the remark with an apostrophe (') instead
of REM.

Examples:

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1 TO 20
140 SUM=SUM+V(I)
150 NEXT I

or

120 FOR I=1 TO 20 'CALCULATED AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

2.97 RENUMBER

Purpose:
To renumber program lines currently held in memory including all references to line numbers in
commands such as ELSE, GOTO, GOSUB, THEN, ON...GOTO, ON...GOSUB.

Syntax:
RENUMBER [first],[increment][,start]]

Comments:

first is the first line number to be used in the new sequence. The default is 10.

increment is the increment for each line. The default is 10.

start is the line number in the old program where renumbering should commence from. The
default is the first line of the program.

This command will first check for errors that may disrupt the renumbering process and it will only
change the program in memory if no errors are found. However, it is prudent to save the program
before running this command in case there are some errors that are not caught.

If a nonexistent line number appears after one of these statements ELSE, GOTO, GOSUB, THEN,
ON...GOTO, ON...GOSUB, the error message "Line number does not exist.
Cancelling RENUMBER" appears.

RENUMBER cannot be used to change the order of program lines or to create line numbers greater
than 65000.

Examples:

RENUMBER
Renumbers the entire program. The first new line number will be 10. Lines increment by 10.

RENUMBER 1000,10
Renumbers the entire program. The first new line number will be 1000. Lines increment by 10.

RENUMBER 1000,10,200
Renumbers the lines from 200 up so they start with line number 1000 and are incremented by 10.

2.98 RESTORE

Purpose:
To allow DATA statements to be reread from the start.

Syntax:
RESTORE

Comments:

After RESTORE the next READ statement accesses the first item in the first DATA statement.

Example:

10 READ A, B, C
20 RESTORE
30 READ D, E, F
40 DATA 57, 68, 79

Assigns the value 57 to both A and D variables, 68 to B and E, and so on.

2.99 RETURN

Purpose:
To return to the calling position after execution of a subroutine

Syntax:
RETURN

Comments:

See GOSUB for details.

2.100 RMDIR

Purpose:
To delete a subdirectory.

Syntax:
RMDIR pathname$

Comments:

pathname$ is a string expression, identifying the subdirectory to be removed from its parent.

The subdirectory to be deleted must be empty of all files except "." and ".." or a "Directory
not empty" error occurs.

Example:

RMDIR "SALES"

2.101 RUN

Purpose:
To execute the program currently in memory, or to load a file from the SD card into memory and
run it.

Syntax:
RUN [linenumber]
RUN filename$

Comments:

RUN or RUN linenumber runs the program currently in memory.

If linenumber is specified, execution begins on that line. Otherwise, execution begins at the
lower line number.

If there is no program in memory then RUN will do nothing.

RUN filename$ closes all open files and deletes the current memory contents before loading
the specified file from SD card into memory and executing it.

If an extension is not specified “.BAS” will be added to the file name.

Examples:

RUN "HELLO"

Runs HELLO.BAS .

2.102 SAVE

Purpose:
To save a program file on the SD card or the local A drive.

Syntax:
SAVE filename$
SAVE # filename$

Comments:

filename$ is a quoted string that follows the normal MS-DOS naming conventions i.e. 8
characters name and 3 characters extension. If filename$ already exists, the file will be written
over. If the extension is omitted, .bas will be used.

The SAVE # filename$ command has been added in the CAN version. Using this syntax all
statements will be saved with tokens (single ASCII characters 128 -255) for commands and
functions. This will result in smaller files (about 20%). The LOAD # filename$ option must
be used to load the program in memory in this case.

Examples:

The following commands save the file TEST.BAS in the two different structures:

SAVE "TEST"
 SAVE # “TEST”

2.103 SAVEBMP

Purpose:
To save the current VGA or composite screen as a BMP file in the current working directory on the
SDcard.

Syntax:
SAVEBMP filename$

Comments:

filename$ is a quoted string that follows the normal MS-DOS naming conventions i.e. 8
characters name and 3 characters extension. If filename$ already exists, the file will be written
over. If the extension is omitted, .BMP will be added.

Note that Windows 7 Paint has trouble displaying the image. This appears to be a bug in Paint as all
other software tested (including Windows XP Paint) can display the image without fault. To save a
program file the SD card.

Examples:

The following command saves the file IMAGE.BMP :

SAVEBMP "IMAGE"

2.104 SDDISABLE

Purpose:
To switch off the SD-CARD from the SPI interface

Syntax:
SDDISABLE

Comments:

SDDISABLE should be used if the SPI interface is used for other purposes. The SPI data lines are
on the same pins as the data lines of the SD interface. Therefore the Chip Select (CS) line of the SD
card should be switched off (logical 1). This is done by SDDISABLE.

Command existed in original DMBasic 2.7, but was not documented.

2.105 SDENABLE

Purpose:
To switch on the SD-CARD again if it is switched off.

Syntax:
SDENABLE

Comments:

SDENABLE can be used to activate the SD-CARD again, after it has been switched off by
SDDISABLE.

As long as the SPI interface is not used for other purposes, this command has no meaning. The
SD-CARD is activated by default.

Command existed in original DMBasic 2.7, but was not documented.

2.106 SDFORMAT

Purpose:
To format a new or used SD-CARD

Syntax:
SDFORMAT

Comments:

The SD-CARD will be formatted in the existing FAT format.

Don’t format an unformatted disk, because this will format it in the smallest FAT format, which will
give you about 50 MB of disk space.

All existing information on the SD-CARD is destroyed.

Disk Name will be DMBasic.

Command existed in original DMBasic 2.7, but was not documented.

2.107 SETPIN

Purpose:
To configure external IO port.

Syntax:
SETPIN pin-number, config
SETPIN pin-number, config, line-number

Comments:

pin-number is the number of the GPIO port. It's in range 1..20 for DuinoMite-Mega,
DuinoMite-Mini and DuinoMite and PIC32T795.

The PIN reference is extended by a range. To use this pin-number has to be 10000 up. The
format is: 1xxyy, where xx is the first PIN in the range and yy the last one. The command
SETPIN(1xxyy),config can be used now.

config defines how the port is configured for use.

 0 Not configured or inactive
 1 Analog input(reads input voltage 0-3.3V, accuracy better than ±1%)
 2 Digital input(read 0 if input voltage is 0..0.65V, 1 if voltage is 2.5..3.3V/5.5V)(5V
 tolerant ports are:)(All digital inputs are Schmitt Trigger buffered.)
 3 Frequency input(measure frequency up to 200KHz)
 4 Period input(measure period pulse width 10nS or more)
 5 Counting input(counts pulses up to 200KHz pulse width 10nS or more)
 6 Interrupt on low to high input change(configure as digital input and interrupt is
 generator on level change low to high)
 7 Interrupt on high to low input change(configure as digital input and interrupt is
 generator on level change high to low)
 8 Digital output(output 3.3V when 1 and 0V when 0)(Typical current draw or sink
 ability on any I/O pin: 10mA)(Maximum current draw or sink on any I/O pin:
 25mA)(Maximum current draw or sink for all I/O pins combined: 150mA)
 9 Open collector digital output to 5V(0V when 0, Vcc when 1)(Maximum open
 collector voltage (I/O pins 11 to 20): 5.5V)

Added in the CAN version are the PWM output configurations:
 18 PWM output 0 - 3.3 V; accuracy 1%
 19 Open collector PWM output 0 - Vcc; accuracy 1%
 28 PWM output 0 - 3.3 V; accuracy 0.1%
 29 Open collector PWM output 0 - Vcc; accuracy 0.1%

Line-number could be added only if config is 6 or 7 and configure the GPIO port to
generate interrupt on level change.

line-number is the start of the interrupt routine. This mode also configures the GPIO port as a
digital input so the value of the port can always be retrieved using the function PIN(). See also
IRETURN to return from the interrupt.

See the function PIN() for reading inputs and the command PIN()= for outputs.

Examples:

10 SETPIN 1,8 'make GPIO.1 / ARDUINO.A0 as OUTPUT
20 PIN(1) = 1' output 3.3V to the port
30 PIN(1) = 0' output 0V to the port

10 SETPIN 11118,2 ‘PINs 11 - 18 set as digital input

Table of the physical position of the pins:
These ports may be digital inputs, digital outputs and analog
inputs, note max voltage to these ports should not exceed 3.3V as
they may be damaged:
ARDUINO.A0 → PIN(1)
ARDUINO.A1 → PIN(2)
ARDUINO.A2 → PIN(3)
ARDUINO.A3 → PIN(4)
ARDUINO.A4 → PIN(5)
ARDUINO.A5 → PIN(6)

These ports may be digital inputs, digital outputs, they are 5V
tolerant, so the maximum input voltage which you should apply to
them should not exceed 5V.
ARDUINO.D0 → PIN(11) → COM1:RX → COM4:RX from RS232 connector
ARDUINO.D1 → PIN(12) → COM1:TX → COM4:TX from RS232 connector
ARDUINO.D2 → PIN(13) → COM1:RTS
ARDUINO.D3 → PIN(14) → COM1:CTS
ARDUINO.D4 → PIN(15) → COM2:RX
ARDUINO.D5 → PIN(16) → COM2:TX
ARDUINO.D6 → PIN(17)
ARDUINO.D7 → PIN(18)

These ports share more than one function together and should be
used with care:
ARDUINO.D8 → PIN(19) → UEXT.CS/VIDEO.SELECT
ARDUINO.D9 → PIN(20) → LED2(YELLOW) VGA.SYNC
ARDUINO.D10 → PIN(7) → UEXT/SD.CARD.SS
ARDUINO.D11 → PIN(8) → UEXT/SD.CARD.MOSI
ARDUINO.D12 → PIN(9) → UEXT/SD.CARD.MISO
ARDUINO.D13 → PIN(10) → UEXT/SD.CARD.CLK

2.108 SETTICK

Purpose:
To setup periodic interrupt and forward the execution to interrupt routing.

Syntax:
SETTICK period, line-number

Comments:

period is the time in milliseconds between interrupts. The period can range from 1 to
4294967295mSec (about 49 days).

line-number is the line number of the interrupt routine. See also IRETURN to return from the
interrupt. This interrupt can be disabled by setting line-number to zero (i.e., SETTICK 0,0).

Examples:
In the following example, LED connected to GPIO.1 (ARDUINO.A0) will start blinking when “1”
is pressed and will stop when “2“ is pressed.

10 SETPIN 1,8 'ARDUINO.A0 is output
20 DO 'loop forever
30 C$=INKEY$: IF C$=”” THEN 30 'wait key pressed
40 IF C$=”1” THEN SETTICK 100,100 'set interrupt every 0.1
sec
50 IF C$=”2” THEN SETTICK 0,0: PIN(1)=0 'clear the interrupts
60 LOOP
100 IF I=0 THEN I=1: PIN(1)=1: IRETURN 'toggle LED
110 IF I=1 THEN I=0: PIN(1)=0: IRETURN

2.109 SETUP

Purpose:
Change some default settings at start up or reset.

Syntax:
SETUP

Comments:

Command shows a menu with settings which can be changed by single key strokes.

When ready you can choose either to ignore (Q) the changes or change them in flash (X)

After the exit with changes, you have to reset or reboot to make them effective.

Command existed in original DMBasic 2.7, but was not documented.

2.110 SLEEP

Purpose:
Set the module in a low power standby mode

Syntax:
SLEEP [time]

Comments:

Command existed in original DMBasic 2.7, but was not documented.

SLEEP sets the PIC32 processor into a sleep mode, which consumes lower power. Of course the
running program is frozen at the moment the command is activated.

The system can be awakened in several ways. The original way is after some time delay. This
parameter must be entered as a text string. The following strings are allowed: SECOND,
10SECOND, MINUTE, 10MINUTE, HOUR, DAY, WEEK, MONTH and YEAR.

In the original DMBasic 2.7 already 2 other ways could be used to wake up:

- Pressing any key on the PS2 keyboard.
- Pressing the button (PIN 0).

In the CAN version are added:

- The PINS 5,6 and 7.
- One of the COM ports
- One of the CAN ports.

Multiple wake up events can be used in parallel. The first one to come, will wake up the system.

The configuration can be done by using a Basic parameter. This can be 0 (or simply not defined) if
the wake up utility is not used or 1 (or any other positive value) when it is enabled.

The CAN wake up utility has to be done by setting the CANINT command.

The table on the next page shows the different wake up possibilities. MM.SLEEP has the value
which represents the actual wake up source.

Wake up source Basic variable Parameter Default value MM.SLEEP value

Time elapsed none <time> none 1

PIN 0 (button) WAKEUP_PIN0 1 4

PIN 5 WAKEUP_PIN5 0 5

PIN 6 WAKEUP_PIN6 0 3

PIN 7 WAKEUP_PIN7 0 2

keyboard WAKEUP_KB 1 8

COM port WAKEUP_COM 0 16

CAN 1 none CANINT none 6

CAN 2 none CANINT none 7

2.111 SOFTRESET

Purpose:
Reset the system by command

Syntax:
SOFTRESET

Comments:

SOFTRESET performs a standard reboot of the system. In the standard DMBASIC 2.7, these
kind of resets did not start the AUTORUN.BAS program if it was available either on DRIVE
A or DRIVE B. A softreset was mostly caused by an illegal PEEK or POKE statement.

In the CAN version this has been changed. At every start or restart the AUTORUN.BAS is
executed if available.

In the bootup message now an extra text is included: Status: 0x0yyy, in which yyy represents
three extra hexadecimal numbers. The value of status can also be asked for in Basic by
MM.BOOTUP, e.g. PRINT MM.BOOTUP. This can be used in the AUTORUN.BAS to
execute different actions depending on the way the system is booted.

The status has a range of 0x000 to 0x3FF (0 - 1023), so 10 bits which can be represented by
<CVEsNWSIBP>. Table below shows the meaning.

Configuration Mismatch Illegal configuration set

Voltage Regulator Standby Voltage during sleep

External Reset Reset pin on chip On at Reset switch

software Reset Softreset Also on at illegal

Not used Peek or Poke

Watchdog Time out Reset caused by Watchdog timer If Watchdog active

Sleep Flag Was in sleep state at reset After Sleep

Idle Flag Was in idle state at reset Also set after sleep

Brown out flag Voltage to low Also at Power up

Power on flag Cold start At power up

2.112 SOUND

Purpose:
To generate single tone sound.

Syntax:SOUND freq, duration, duty

Comments:

freq is the tone frequency in Hertz (cycles per second). freq is a numeric expression within the
range of 20 and 1,000,000, which corresponds to frequencies from 20Hz to 1Mhz for duration
of milliseconds. The sound is played in the background and does not stop program execution.

If duration is zero, any active SOUND statement is turned off. If no SOUND statement is
running, a duration of zero has no effect.

duty is the optional duty cycle of the waveform in percent. If it is close to zero the output will be a
narrow positive pulse, if 50 a square wave will be generated and if close to 100 it will be a very
wide positive pulse. If it is not specified the duty cycle will default to 50%.

Setting the duty cycle allows the sound output to be used as a Pulse Width Modulation (PWM)
output for driving analogue circuits. The signal will be available at the sound connector and the
voltage divider on this output should be removed so that the full signal level is available. The
frequency of the output is locked to the PIC32 crystal and is very accurate and for frequencies
below 100KHz the duty cycle will be accurate to 0.1%.

Examples:

The following example creates random sounds of short duration:

10 SOUND RND(1)*1000+100, 10
20 GOTO 10

2.113 TIME$

Purpose:
To set the current time.

Syntax:
TIME$ = string exp

Comments:

string exp is a valid string literal or variable that lets you set hours (hh), hours and
minutes(hh:mm), or hours, minutes, and seconds (hh:mm:ss).

hh sets the hour (0-23). Minutes and seconds default to 00.

hh:mm sets the hour and minutes (0-59). Seconds default to 00.

hh:mm:ss sets the hour, minutes, and seconds (0-59).

If string exp is not a valid string “Invalid Syntax” error will occur.

As you enter any of the above values, you may omit the leading zero, if any. You must, however,
enter at least one digit. If you wanted to set the time as a half hour after midnight, you could enter
TIME$="0:30", but not TIME$= ":30".

If any of the values are out of range, an "Invalid time" error is issued. The previous time is
retained.The current time is stored if TIME$ is the target of a string assignment.

The time is set to “00:00:00” at power up.

See also the TIME$ function for reading the time.

Examples:

The following example sets the time at 8:00 o'clock and reads it after 5 seconds :

TIME$ = "08:00"
PRINT TIME$
08:00:05

2.114 TIMER

Purpose:
To set the timer to a number of milliseconds.

Syntax:
TIMER = value

Comments:
TIMER sets the TIMER to number of milliseconds. Normally this is used to reset the timer to zero,
but you can set it to any positive integer value.

The timer is reset to zero on power up and reset.

2.115 TROFF

Purpose:
To switch off the trace option.

Syntax:
TROFF

Comments:

See TRON

2.116 TRON

Purpose:
To trace the execution of program statements.

Syntax:
TRON

Comments:

As an aid in debugging, the TRON (trace on) command enables a trace flag that prints each line
number of the program as it is executed. The numbers appear enclosed in square brackets.

TRON may be executed in either the direct or indirect mode.The trace flag is disabled with the
TROFF (trace off) command, or when a NEW command is executed.

Examples:

TRON
10 K=10
20 FOR J=1 TO 2
30 L=K + 10
40 PRINT J; K; L
50 K=K+10
60 NEXT
70 END
RUN
 [10][20][30][40] 1 10 20
 [50][60][30][40] 2 20 30
 [50][60][70]
TROFF

2.117 WATCHDOG

Purpose:
To activate and stop the internal PIC32 watchdog

Syntax:
WATCHDOG [timer]

Comments:

If active the watchdog is kicked by the video interrupt routine, which is called at every
horizontal sync. By default it is set by just entering WATCHDOG and it is activated at every
sync interrupt.

The watchdog is stopped by entering for timer the value 0.

Entering any other positive number will start a counter in the video routine and if the counter
reaches the value of timer the watchdog is kicked.

For using the watchdog to reset the system if anything goes wrong, we advise to use the
default value.

It is possible for time critical situations that it has an additional value if also the watchdog is
set to a critical value. As this value is dependent on the used hardware, one has to experiment
with this value. If the value is set too high the system is directly reset.

2.118 WEND

Purpose:
To branch back to the beginning of the WHILE loop

Syntax:
WEND

Comments:

Please for new code use DO ... LOOP statements.

See WHILE for details.

2.119 WHILE

Purpose:
To execute a series of statements in a loop as long as a given condition is true.

Syntax:
WHILE expression
 [loop statements]
WEND

Comments:

Please for new code use DO ... LOOP statements.

If expression is non-zero (true), loop statements are executed until the WEND
statement is encountered. MM-BASIC then returns to the WHILE statement and checks
expression. If it is still true, the process is repeated.

If it is not true, execution resumes with the statement following the WEND statement.

WHILE and WEND loops may be nested to any level. Each WEND matches the most recent
WHILE.

An unmatched WHILE statement causes a "WHILE without matching WEND" error. An
unmatched WEND statement causes a "LOOP without matching DO" error.

Examples:

10 SETPIN 1,8
20 WHILE PIN(0)=0 'blink LED on ARDUINO.A0 until USER button
is pressed
30 PIN(1) = 1: PAUSE 100: PIN(1) = 0: PAUSE 100
40 WEND

2.120 WRITE

Purpose:
To write data to a sequential file.

Syntax:
WRITE [#filenum,] list-of-expressions

Comments:

Please use PRINT for new code.

Outputs the value of each expression separated by commas (,).

filenum is the number under which the file was opened for output or append, if missing writes to
screen.

List-of-expressions is a list of string and/or numeric expressions separated by commas or
semicolons.

The WRITE and PRINT statements differ in that WRITE inserts commas between the items as
they are written and delimits strings with quotation marks, making explicit delimiters in the list
unnecessary.

Another difference is that WRITE does not put a blank in front of a positive number. After the last
item in the list is written, a carriage return/line feed sequence is inserted.

If the expression is a number it is outputted without preceding or trailing spaces. If it is a string
it is surrounded by double quotes (“). The list is terminated with a new line.

Examples:

WRITE 1, 2, 3, 4, 5, “HELLO”
1,2,3,4,5,”HELLO”

As you can see WRITE removes the spaces, add commas between the expressions and keeps the “”

Let A$ = "CAMERA" and B$ = "93604-1". The following statement:

WRITE #1, A$, B$
writes the following image to disk:

"CAMERA", "93604-1"

A subsequent INPUT$ statement, such as the following, would input "CAMERA" to A$ and
"93604-1"to B$:

INPUT #1, A$, B$

2.121 XMODEM

Purpose:
To transfer a file to or from a remote computer using the XModem protocol.

Syntax:
XMODEM SEND file$
XMODEM RECEIVE file$

Comments:

Transfers a file to or from a remote computer using the XModem protocol. The transfer is done over
the USB connection or, if a serial port is opened as console, over that serial port.

file$ is the file (on the SD card or internal flash) to be sent or received.The XModem protocol
requires a cooperating software program running on the remote computer and connected to its serial
port. It has been tested on Teraterm running on Windows and it is recommended that this be used.
After running the XMODEM command in MM-BASIC select:

File -> Transfer -> XMODEM -> Receive/Send
from the Teraterm menu to start the transfer.

The transfer can take up to 15 seconds to start and if the XMODEM command fails to establish
communications it will return to the MMBasic prompt after 30 seconds.

Download Teraterm from http://ttssh2.sourceforge.jp/
For Linux we recommend to use MINICOM.

Examples:

XMODEM RECEIVE “FILE.TXT”
XMODEM SEND “DATA.BAS”

http://ttssh2.sourceforge.jp/

3. The DMBasic functions

The first 14 functions are all one or two characters operators. They are described briefly with
number, description and example.

No. char description example

3.1 - subtraction 7 - 2 = 5

3.2 * multiplication 7 * 2 = 14

3.3 / division 7 / 2 = 3.5

3.4 \ integer division 7 \ 2 = 3

3.5 ^ exponentiation 7 ^ 2 = 49

3.6 + addition 7 + 2 = 9

3.7 < less than (7 < 2) = 0 (false)
 (2 < 7) = 1 (true)

3.8 <= less than or equal (7 <= 7) = 1 (true)

3.9 <> not equal (7 <> 7) = 0 (false)
 (7 <> 2) = 1 (true)

3.10 = equal (7 = 2) = 0 (false)
 (7 = 7) = 1 (true)

3.11 =< equal or less than same as 3.8

3.12 => equal or greater than (7 => 7) = 1 (true)

3.13 > greater than (7 > 2) = 1 (true)
 (2 > 7) = 0 (false)

3.14 >= greater than or equal same as 3.12

3.15 ABS

Purpose:
To return the absolute value of the expression n.

Syntax:
ABS(n)

Comments:

n must be a numeric expression.

Examples:

PRINT ABS(7*(-5))
 35

Prints 35 as the result of the action.

3.16 AND

Purpose:
Operator for logical AND function

Syntax:
AND

Comments:

AND is a bitwise operation

Example:

PRINT 3 AND 6
 2

Both 3 and 6 have the second bit 1 and no other common bits.

3.17 AS

Purpose:
Separation between parameters in some commands

Syntax:
AS

Comments:

AS is not a real function, but is used to make some commands more readable.

Used in: OPEN, NAME and FONT.

Examples:

OPEN "TEMP.TXT" FOR INPUT AS #1

NAME "ACCTS" AS "LEDGER"

10 FONT LOAD “ARROWS.FNT” AS #9 'load the font
20 FONT #9
30 PRINT “0”

3.18 ASC

Purpose:
To return a numeric value that is the ASCII code for the first character of the string x$.

Syntax:
ASC(x$)

Comments:

If x$ is null, 0 is returned.

If x$ begins with an uppercase letter, the value returned will be within the range of 65 to 90.

If x$ begins with a lowercase letter, the range is 97 to 122.

Numbers 0 to 9 return 48 to 57, sequentially.

See the CHR$ function for ASCII-to-string conversion.

See ASCII codes appendix for ASCII codes.

Examples:

10 X$="TEN"
20 PRINT ASC(X$)
RUN
84

84 is the ASCII code for the letter T.

3.19 ATN

Purpose:
To return the arctangent of x, when x is expressed in radians.

Syntax:
ATN(x)

Comments:

The result is within the range of -π/2 to π/2.

The expression x may be any numeric type.

To convert from degrees to radians, multiply by π/180.

Examples:

10 INPUT X
20 PRINT ATN(X)
RUN
? 3
1.24905

Prints the arctangent of 3 radians (1.24905).

3.20 BYTE2NUM

Purpose:
Return the number created by storing the four arguments as consecutive bytes

Syntax:
BYTE2NUM(array(x))
BYTE2NUM(byte1,byte2,byte3,byte4)

Comments:

MM-BASIC numbers are stored as the C float type and are four bytes in length.

The bytes can be supplied as four separate numbers or as four elements of array starting at
index x.

See the command NUM2BYTE for the reverse of this function.

Example:

This code changes MOD-IO address by I2C commands:

5 'edit line 40 to change new address
10 CLS
20 INPUT "Press Hold But on MOD-IO then hit enter ";a
30 CurI2c = &h58
40 NewI2c = &h5a
50 I2CEN 100,100 ' Enable I2C
60 I2CSEND CurI2c,1,2, &hf0, NewI2c
70 I2CDIS
80 END

3.21 CANCLOCK

Purpose:
To get the value of the clock of the active CAN controller

Syntax
CANCLOCK

Comments:

The resolution is dependent on the resolution set by CANOPEN. Default resolution is 100 uS,
but it can be as low as 1 uS.

The canclock is reset by the CANOPEN command. It has already started at boot up.

The CAN timestamps are compared with the 1 ms clock and are corrected if the internal CAN
clock has an overflow. The total timestamp is a 32 bit value. If the resolution is set to 1uS, it
means that the maximum measurement time is 1.25 hours.

Value of CANCLOCK is included in CANSTATUS.

Examples:

PRINT CANCLOCK
 123456

x = CANCLOCK

3.22 CANOBJECT

Purpose:
To get some data of existing CANOBJECTs.

Syntax:
CANOBJECT

Comments:

For the objects 0 to 31 status = CANOBJECT(objectno) will give status the value 0
if it is not active and the value of the lower 16 bits of the first address of the FIFO for this
object. The higher 16 bits can be read by the CANSTATUS command.

Example:

IF CANOBJECT(0) > 0 THEN POKE &HA000, CANOBJECT(0)+8, PIN(0)

This Basic instruction will replace the databyte 0 in the FIFO by the actual value of PIN(0). In
this example we use the default configuration with 64 FIFO’s and FIFO 0 set as TX FIFO. If
the FIFO’s are in the Basic memory area, the first parameter will probably be &HA001.
Using the POKE command has quite some risk, but it is much faster than searching for the
Basic parameter every time.

counter = CANOBJECT(32) will give counter the value of the total object counter.

Besides the total counter, counters are included for every object separately. These counters
can be read by the function: counter = CANOBJECT(1xx), where xx has the value of 00
up to 31.

status = CANOBJECT(2xx) will give the object status of xx (value as in CANSTATUS).

timer = CANOBJECT(3xx) will give timer the actual timer value of xx.

dependant = CANOBJECT(4xx) will give dependant the value of the objectno. of
which xx is dependant (0 if not used).

See also the command CANOBJECT.

3.23 CHR$

Purpose:To convert an ASCII code to its equivalent character.

Syntax:
CHR$(n)

Comments:

n is a value from 0 to 255.

CHR$ is commonly used to send a special character to the terminal or printer. For example, you
could add CHR$(13) or CHR$(34) in string.

See the ASC() function for ASCII-to-numeric conversion.

See ASCII codes appendix for ASCII codes.

Examples:

PRINT CHR$(66);
B

This prints the ASCII character code 66, which is the uppercase letter B.

PRINT CHR$(13);

This command prints a carriage return.

3.24 CINT

Purpose:
To round numbers with fractional portions to the next whole number or integer.

Syntax:
CINT(x)

Comments:
x should integer number range. See also INT() and FIX() both of which return integers.

Examples:

PRINT CINT(45.67)
 46

45.67 is rounded up to 46.

PRINT CINT(-35.54)
 -36

-35.54 is rounded up to -36.

3.25 COS

Purpose:
To return the cosine of the argument x in radians.

Syntax:
COS(x)

Comments:

x must be in radians. COS is the trigonometric cosine function. To convert from degrees to
radians,multiply by π/180.

Example 1:

10 X=2*COS(.4)
20 PRINT X
RUN
 1.84212

Example 2:

10 PI=3.14159
20 PRINT COS(PI)
30 DEGREES=180
40 RADIANS=DEGREES*PI/180
50 PRINT COS(RADIANS)
RUN
 -1 -1

3.26 CWD$

Purpose:
To return the current working directory on the SD card as a string.

Syntax:
CWD$

Comments:

Can be used in string expression.

Example:

PRINT “CURRENT WORKING DIRECTORY IS: “;CWD$
CURRENT WORKING DIRECTORY IS: \

3.27 DATE$

Purpose:
To retrieve the current date.

Syntax:
DATE$

Comments:

The date is set to “01-01-2000” at power up. If MOD-RTC (Real-Time-Clock Module) is connected
to UEXT the current date will be set form the read content from MOD-RTC.

The current date (as assigned when the operating system was initialized) is fetched and assigned to
the string variable if DATE$ is the expression in a LET or PRINT statement.The current date
is stored if DATE$ is the target of a string assignment.

With v$=DATE$, DATE$ returns a 10-character string in the form dd-mm-yyyy. dd is the
day (01 to 31), mm is the month (01 to 12) and yyyy is the year (2000 to 9999).

Example:

V$=DATE$
PRINT V$
01-01-2000

3.28 DOW

Purpose:
To retrieve the day of the week

Syntax:
DOW

Comments:

Returns the number of the day in the week.

0 =sunday; 1=monday; 2=tuesday; 3=wednesday; 4=thursday; 5=friday; 6=saturday.

Example:

PRINT DOW
 1

This means it is monday, presuming DATE$ has the right date.

This function was already in the original DMBasic 2.7, however not documented.

3.29 ELSE

Purpose:
To activate the ELSE command in a single line IF … THEN … ELSE statement

Syntax:
ELSE

Comments:

A statement starts with a command and further only functions, variables, constants, etc. The IF …
THEN … ELSE statement however starts a new statement after the THEN and ELSE, also if it is
a single line statement. That is why the pseudo THEN and ELSE functions are created. When
they are detected, the THEN and ELSE commands are executed.

See further the IF command.

3.30 EOF

Purpose:To return true if the end of file has been reached, or to return 0 if end of file (EOF) has not
been found.

Syntax:
EOF([#]file-number)

Comments:

Will return true if the file previously opened for INPUT with the file-number is positioned
at the end of the file.

If used on a file-number opened as a serial port this function will return true if there are no
characters waiting in the receive buffer.

The # is optional. Also see the OPEN, INPUT and LINE INPUT commands and the INPUT$
function.

Examples:

10 OPEN "COM1:19200" AS #5
20 IF NOT EOF(#5) THEN PRINT INPUT$(1,#5);
30 GOTO 20

Open the COM1 serial port and if character is received in the buffer print it on the screen.

3.31 EXP

Purpose:
To return e (the base of natural logarithms) to the power of x.

Syntax:
EXP(x)

Comments:

x must not cause overflow.

Example:

10 x = 5
20 PRINT EXP(x-1)
RUN
 54.5981

Prints the value of e to the 4th power.

3.32 FIX

Purpose:
To truncate x to a whole number.

Syntax:
FIX(x)

Comments:

FIX does not round off numbers, it simply eliminates the decimal point and all characters to the
right of the decimal point.

FIX(x) is equivalent to SGN(x)*INT(ABS(x)). The major difference between FIX and
INT is that FIX does not return the next lower number for negative x. This behavior is for
Microsoft compatibility.

FIX is useful in modulus arithmetic.

See also CINT().

Examples:

PRINT FIX(9.89)
 9

PRINT FIX(-2.11)
 -2

3.33 FOR

Purpose:
Separation between parameters in some commands

Syntax:
FOR

Comments:

FOR is not a real function, but is used to make some commands more readable.

Used in: OPEN and EXIT.

FOR as command has nothing to do with this function.

3.34 FORMAT$

Purpose:
To return a string representing number formatted according to the specifications in the string
format$.

Syntax:
FORMAT$(number, format$)

Comments:

The format$ specification starts with a % character and ends with a letter. Anything outside of
this construct is copied to the output as is.

The structure of a format specification is:
% [flags] [width] [.precision] type

Where flags can be:

- Left justify the value within a given field width
0 Use 0 for the pad character instead of space
+ Forces the + sign to be shown for positive numbers
space Causes a positive value to display a space for the sign. Negative values still show the

 – sign

width is the minimum number of characters to output, less than this the number will be padded,
more than this the width will be expanded.

precision specifies the number of fraction digits to generate with an e, or f type or the
maximum number of significant digits to generate with a g type. If specified the precision must be
preceded by a dot (.).

type can be one of:

g Automatically format the number for the best presentation.
f Format the number with the decimal point and following digits
e Format the number in exponential format
x Format the number in hexadecimal
d Format the number as integer

If uppercase G, F or X is used the exponential output will use an uppercase E / A - F. If
the format specification is not specified “%g” is assumed.

Formats x and d are added in the CAN version.

Examples:

format$(45)
will return 45

format$(45,”%g”)
will return 45

format$(24.1,”%g”)
will return 24.1

format$(24.1,”%f”)
will return 24.100000

format$(24.1,”%e”)
will return 2.410000e+01

format$(24.1,”%09.3f”)
will return 00024.100

format$(24.1,”%+.3f”)
will return +24.100

format$(24.1,”**%-9.3f**”)
will return **24.100 **

format$(24.1,”%d”)
Will return 24

format$(24.1,”%h”)
Will return 18

3.35 GETDIM

Purpose:
To get the status of a variable name

Syntax:
GETDIM(varname$)

Comments:

GETDIM can be used to check if a variable name has been used already. For an array it can
be used to get the size (dimensions) of the array.

varname$ must be a string.

If the variable is a standard variable (number or string) it will return -1 if it does not exist and
0 if it exists.

If the variable is an element of an one dimensional array it will return the dimension of that
array.

If the variable is an element of a multidimensional array it will return the total number of
elements of that array.

Example:

 10 DIM a(20),b(10,10):c=5

20 PRINT GETDIM(“a”);GETDIM(“a(0)”);GETDIM(“b(2,3)”);
GETDIM(“c”);GETDIM(“d”);GETDIM(“a(25)”)
RUN
 -1 20 100 0 -1
ERROR: Array index out of bounds

GETDIM cannot be used for an array element which is not within the DIM specification.
Element 0 is always available.

3.36 GETPIN

Purpose:
To get the configuration of an I/O pin

Syntax:
GETPIN(x)

Comments:

Possible values:

0 Not configured
1 Analogue input
2 Digital input
3 Frequency input
4 Period input
5 Count input
6 Interrupt Low to High input
7 Interrupt High to Low input
8 Digital input
9 Digital input Open Collector
18 PWM input 1%
19 PWM 1% Open Collector
28 PWM input 0.1%
29 PWM 0.1% Open Collector

Example:

10 SETPIN(1,2)
20 PRINT GETPIN(1)
RUN
 2

3.37 GOSUB

Purpose:
To activate the GOSUB command within the ON command

Syntax:
(ON x)GOSUB line numbers

Comments:

See ON command for details

ON x GOSUB variables is an illegal statement and will generate an “Invalid line number”
error.

3.38 GOTO

Purpose:
To activate the GOTO command within the ON or IF command.

Syntax:
(IF expression) GOTO line number
(ON x) GOTO line numbers

Comments:

See IF and ON commands for details.

3.39 HEX$

Purpose:
To return a string which represents the hexadecimal value of the numeric argument.

Syntax:
HEX$(x)

Comments:

HEX$ converts decimal values within the range of ±1677100 string expression within the range of
0 to FFFFFFFF.

Hexadecimal numbers are numbers to the base 16, rather than base 10 (decimal numbers).

x is rounded to an integer before HEX$(x) is evaluated.

If x is negative, 2's (binary) complement form is used i.e. -1 is FFFFFFFF

Example:

10 CLS: INPUT "INPUT DECIMAL NUMBER";X
20 A$=HEX$(X)
30 PRINT X "DECIMAL IS "A$" HEXADECIMAL"
RUN
INPUT DECIMAL NUMBER? 32

 32 DECIMAL IS 20 HEXADECIMAL

3.40 INKEY$

Purpose:
To return one character read from the keyboard.

Syntax:
INKEY$

Comments:

If no character is pending in the keyboard buffer, a null string (length zero) is returned.

If several characters are pending, only the first is returned.

No characters are displayed on the screen, and all characters except the following are passed to the
program:

CTRL-BREAK
CTRL-NUM LOCK
CTRL-ALT-DEL
CTRL-PRTSCR
PRTSCR

Example:

10 CLS 'game moves rectangle 1,2,3 keys are used
20 X = 0 : D = 1
30 LINE (X*20,100)-(X*20+20,105),1,BF
40 PAUSE 100
50 LINE (X*20,100)-(X*20+20,105),0,BF
60 C$ = INKEY$
70 IF C$ = “1” THEN D = -1 'move right to left
80 IF C$ = “2” THEN D = 1 'move left to right
90 IF C$ = “3” THEN END 'quit
100 X = X + D
110 IF X > 23 THEN X = 0
120 IF X < 0 THEN X = 23
130 GOTO 30

3.41 INPUT$

Purpose:
To read and return characters from file.

Syntax:
INPUT$(number, [#]file-number)

Comments:

Will return a string composed of number characters read from a file previously opened for
INPUT with the file number file-number. This function will read all characters including
carriage return and new line without translation.

When reading from a serial communications port this will return as many characters as are waiting
in the receive buffer up to number. If there are no characters waiting it will immediately return
with an empty string.

The # is optional. Also see the OPEN command.

Examples:

In the following example, MOD-GPS is connected to DuinoMite-Mega UEXT and the GPS message
in NMEA format is read and will display it on the screen.

10 OPEN “COM3:19200” AS #3
20 PRINT INPUT$(1,#3);
30 GOTO 20

3.42 INSTR

Purpose:
To search for the first occurrence of string y$ in x$, starting from position n and return the
position at which the string is found.

Syntax:
INSTR([n,]x$,y$)

Comments:

Optional offset n sets the position for starting the search. The default value for n is 1. If n
equals zero, the error message "Number out of bounds" is returned. n must be within the
range of 1 to 255. If n is out of this range, an "Number out of bounds" error is returned.

INSTR returns 0 if:

•n > LEN(x$)
•x$ is null
•y$ cannot be found

If y$ is “”, INSTR returns n.
x$ and y$ may be string variables, string expressions, or string literals.

Example:

10 X$="ABCDEBXYZ"
20 Y$="B"
30 PRINT INSTR(X$, Y$); INSTR(4, X$, Y$)
RUN
 2 6

The interpreter searches the string "ABCDFBXYZ" and finds the first occurrence of the character B
at position 2 in the string. It then starts another search at position 4 (D) and finds the second match
at position 6 (B). The last three characters are ignored, since all conditions set out in line 30 were
satisfied.

3.43 INT

Purpose:
To truncate an expression to a whole number.

Syntax:
INT(n)

Comments:

Negative numbers return the next lowest number. This behaviour is for Microsoft compatibility, the
FIX() function provides a true integer function.

The FIX and CINT functions also return integer values.

Examples:

PRINT INT(98.89)
 98

PRINT INT(-12.11)
 -13

3.44 LCASE$

Purpose:
To return x$ converted to lowercase characters.

Syntax:
LCASE$(x$)

Comments:

x$ may be empty string.

Example:

PRINT LCASE$(“qWeRTyUIop”)
qwertyuiop

3.45 LEFT$

Purpose:
To return a string that comprises the leftmost n characters of x$.

Syntax:
LEFT$(x$,n)

Comments:

n must be within the range of 0 to 255. If n is greater than LEN(x$), the entire string (x$) will
be returned. If n equals zero, the null string (length zero) is returned (see the MID$() and
RIGHT$() substring functions).

Example:

10 A$="BASIC"
20 B$=LEFT$(A$, 3)
30 PRINT B$
RUN
BAS

The left-most three letters of the string "BASIC" are printed on the screen.

3.46 LEN

Purpose:
To return the number of characters in x$.

Syntax:
LEN(x$)

Comments:

x$ is any string expression. Non-printing characters and blanks are counted.

Example:

10 X$="PORTLAND, OREGON"
20 PRINT LEN(X$)
RUN
 16

Note that the comma and space are included in the character count of 16.

3.47 LOAD

Purpose:
To load a custom font by using the FONT command.

Syntax:
(FONT)LOAD “fontfile” AS [#]n

Comments:

See FONT command for details

Function LOAD is never used to load a Basic file; this is the command LOAD.

3.48 BLOAD

Purpose:
To load a custom binary font by using the FONT command.

Syntax:
(FONT)BLOAD “fontfile” AS [#]n

Comments:

See FONT command for details.

FONT BLOAD “fontfile” AS [#]n is for system level developers only.

3.49 LOC

Purpose:
To return the number of bytes waiting in the receive buffer of a serial port (ie, COM1:, COM2:,
COM3:or COM4:).

Syntax:
LOC([#]file-number)

Comments:

file-number is the file number used when the Serial port was opened. The # is optional.

When transmitting or receiving a file through a communication port, LOC returns the number of
characters in the input buffer waiting to be read. The default size for the input buffer is 127
characters.

If there are more than 127 characters received only the last 127 remain in the buffer, LOC returns
127.

If fewer than 127 characters remain in the buffer, then LOC returns the actual count.

Examples:

200 IF LOC(#1)>5 THEN 300 'process the input message when
5 are read

The program jumps to line 300 after 5 characters are read.

3.50 LOF

Purpose:
To return the free space in the transmit buffer.

Syntax:
LOF([#]file-number)

Comments:

file-number is the number of the file that the file was opened under.

With communications files, LOF returns the amount of free space in the input buffers.

Examples:

The following example reads message only when the buffer is half filled:

10 OPEN "COM1:9600" AS #1
20 IF LOF(#1) < 64 THEN MSG$=INPUT$(64,#1)

3.51 LOG

Purpose:
To return the natural logarithm of x.

Syntax:
LOG(x)

Comments:

x must be a number greater than zero.

Examples:

PRINT LOG(2)
 .693147

PRINT LOG(1)
 0

PRINT LOG(0.0001)
 -9.21034

3.52 MID$

Purpose:
To return a string of m characters from x$ beginning with the n th character.

Syntax:
MID$(x$,n[,m])

Comments:

n must be within the range of 1 to 255.

m must be within the range of 0 to 255.

If m is omitted, or if there are fewer than m characters to the right of n, all rightmost characters
beginning with n are returned.

If n > LEN(x$), MID$ function returns a null string.

If m equals 0, the MID$ function returns a null string.

If either n or m is out of range, an "Number out of bounds" is returned.

Example:

10 A$="GOOD"
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$; MID$(B$, 8, 8)
RUN
GOOD EVENING

Line 30 concatenates (joins) the A$ string to another string with a length of eight characters,
beginning at position 8 within the B$ string.

3.53 MM.BLANK

Purpose:
To return the time in seconds when the display will be turned off (screen saver)

Syntax:
MM.BLANK

Comments:

Screen saver must be enabled in SETUP (option n).

MM.BLANK can be given any value by the MM.BLANK command.

Example:

 100 IF MM.BLANK<10 GOTO 200

…
200 PRINT
210 PRINT CHR$(13);”Display will go down in”;MM.BLANK;” seconds”;
220 PAUSE 1000
230 IF MM.BLANK=0 THEN END
240 GOTO 210

3.54 MM.BOOTUP

Purpose:
To get the bootup status

Syntax:
MM.BOOTUP

Comments:

MM.BOOTUP has the status after a new boot. Cold start, warm start, start after illegal action, start
after sleep, etc.

The table with possible values can be found in SOFTRESET.

The decimal value of MM.BOOTUP is the same as the hexadecimal Status in the bootup message.

MM.BOOTUP was available in the original DMBasic, however not documented.

3.55 MM.DRIVE

Purpose:
For the dummy who forgot that the drive name is a string

Syntax:
MM.DRIVE

Comment:

See next page for MM.DRIVE$.

3.55 MM.DRIVE$

Purpose:
To get the name of the actual drive

Syntax:
MM.DRIVE$

Comment:

Only 2 possibilities: A: or B:

Example:

 PRINT MM.DRIVE$

B:

3.56 MM.ERRNO

Purpose:
To get the kind of error if an error occurs during file access.

Syntax:
MM.ERRNO

Comments:

Is set to the error number if a statement involving the SD card fails or zero if the operation
succeeds. This is dependent on the setting of OPTION ERROR. The possible values for
MM.ERRNO are:

0 = No error
1 = No SD card found
2 = SD card is write protected
3 = Not enough space
4 = All root directory entries are taken
5 = Invalid filename
6 = Cannot find file
7 = Cannot find directory
8 = File is read only
9 = Cannot open file
10 = Error reading from file
11 = Error writing to file
12 = Not a file
13 = Not a directory
14 = Directory not empty
15 = Hardware error accessing the storage media

See OPTION ERROR for an example of how to use it.

3.57 MM.FNAME$

Purpose:
To get the name or the file that will be used as the default for the SAVE command.

Syntax:
MM.FNAME$

Comments:

It is set by the commands LOAD, RUN and SAVE.

An empty string will be returned as long as none of these commands are executed.

Example:

PRINT “The actual file name is “;MM.FNAME$
The actual file name is DEMO.BAS

3.58 MM.HRES

Purpose:
To get the horizontal resolution of the current video display screen in pixels

Syntax:
MM.HRES

Comments:

Resolution is dependent on the settings of SETUP.

Resolution can also be influenced by the OLED command.

3.59 MM.I2C

Purpose:
To get the result of an I2C operation.

Syntax:
MM.I2C

Comments:

Following possibilities for MM.I2C:

0 = The command completed without error.
1 = Received a NACK response
2 = Command timed out
4 = Received a general call address (when in slave mode)

3.60 MM.SETUP

Purpose:
To get the status of some parameters from SETUP.

Syntax:
MM.SETUP

Comments:

Five parameters of SETUP are available. They are available in binary as following:
<VCUSDH>

<V>: Video Mode (If enabled (any mode) 32; disabled 0)
<C>: Serial Console (If enabled 16; disabled 0)
<U>: Usb Port (If enabled 8; disabled 0)
<S>: SD Card (If enabled 4; disabled 0)
<D>: Date Format (MM/DD/YY 2; DD/MM/YY 0)
<H>: Hardware (Maximite 1; Duinomite 0; this parameter is always 0)

Example:

PRINT MM.SETUP
 12

This is the default setting, meaning Usb Port and SD Card enabled; no serial console and Date
Format DD/MM/YY

3.61 MM.SLEEP

Purpose:
To notice which event awakened the system from sleep.

Syntax:
MM.SLEEP

Comments:

The values can be found at the SLEEP command.

3.62 MM.VER

Purpose:
To get the version number of the software

Syntax:
MM.VER

Comments:

The version number of the firmware in the form aa.bbcc where aa is the major version number, bb
is the minor version number and cc is the revision number (normally zero but A = 01, B = 02, etc).

In the CAN version of the software this has not been updated anymore. This means it has been
frozen on: 2.7014 (major 2; minor 70; revision 14). Use COPYRIGHT for the actual version
numbers.

3.64 MM.VRES

Purpose:
To get the vertical resolution of the current video display screen in pixels

Syntax:
MM.VRES

Comments:

Resolution is dependent on the settings of SETUP.

Resolution can also be influenced by the OLED command.

3.65 MOD

Purpose:
Operator for modulus function

Syntax:
MOD

Comments:

Modulus is the remainder of a division

Example:

PRINT 7/2;7\2;7 MOD 2
 3.5 3 1

7/2 =3.5 and as integer division 3 with a remainder of 1.

3.66 NOT

Purpose:
Operator for logical NOT function

Syntax:
NOT

Comments:

NOT is a logical inverse of the value on the right.

The NOT operator is highest in precedence so it will bind tightly to the next value. For normal use
the expression to be negated should be placed in brackets.

Example:

IF NOT (A=3 OR A=8) THEN

3.67 OCT$

Purpose:
To convert a decimal value to an octal value.

Syntax:
OCT$(x)

Comments:

x is rounded to an integer before OCT$(x) is evaluated.

OCT$ converts decimal values within the range of ±1677100 to an octal string expression.

Octal numbers are numbers to the base 8 rather than base 10 (decimal numbers).

See the HEX$ function for hexadecimal conversion.

Examples:

10 PRINT OCT$(18)
RUN
 22

Decimal 18 equates to Octal 22.

3.68 OR

Purpose:
Operator for logical OR function

Syntax:
OR

Comments:

OR is a bitwise operation

Example:

PRINT 3 OR 6
 7

3 has the first and second bit high; 6 has the second and third bit high; so bit 1, 2 and 3 gets high in
at least one of the numbers; 111 results in 7 decimal.

3.69 PEEK

Purpose:
To read from a specified memory location.

Syntax:
PEEK(hiword,loword)

Comments:

Returns the byte (decimal integer within the range of 0 to 255) read from the specified memory
location. hiword is the top 16 bits of the address while loword is the bottom 16 bits.

See the POKE command for notes and warnings related to memory access.

PEEK is the complementary function to the POKE statement.

3.70 PIN

Purpose:To read from a specified external GPIO port.

Syntax:
PIN(n)

Comments:

If the GPIO ports is initialized as Digital Input with the SETPIN command, zero means digital
low, read 1 means digital high.

For GPIO ports initialized with SETPIN command as analogue inputs, it will return the
measured voltage as a floating point number between 0 and 3.3 which corresponds to 0V to 3.3V.

For GPIO ports initialized with SETPIN command as Frequency inputs, will return the
frequency in Hz (maximum 200KHz).

For GPIO ports initialized with SETPIN command as Period inputs, will return the period in
milliseconds.

For GPIO ports initialized with SETPIN command as Count input, will return the count since
reset (counting is done on the positive rising edge). The count input can be reset to zero by resetting
the pin to counting input (even if it is already so configured).

PIN(0) is a special case which will always return the state of the user push button on the PC
board (non zero means that the button is down).

In the CAN version of the software it is also possible to read back the values of GPIO ports which
have been configured as output (8, 9, 18, 19, 28, 29).

In the CAN version it is also possible to read a number of sequential digital inputs.

Also see the SETPIN and PIN()= commands.

Example:

In the following example, a LED connected to ARDUINO.A0 and GND will light ON when User
button is pressed.

10 SETPIN 1,8
20 PIN(1) = PIN(0)
30 GOTO 20

3.71 PIXEL

Purpose:
To return the current value of a pixel on the VGA or composite screen.

Syntax:
PIXEL(x,y)

Comments:

Zero is off, 1 is on. Most upper-left coordinate is 0,0 the most right-down coordinates are
MM.HRES, MM.VRES.
See the statement PIXEL(x,y)= for setting the value of a pixel.

Example:

CLS
PRINT PIXEL(100,100)
 0

3.72 POS

Purpose:
To return the current cursor position.

Syntax:
POS

Comments:

The leftmost position is 1.

Example:

10 CLS
20 A$ = INKEY$:IF A$ = "" THEN GOTO 30 ELSE PRINT A$;
30 GOTO 20
40 IF POS > 10 THEN PRINT CHR$(13);CHR$(10);
50 GOTO 30

Causes a carriage return and line feed after the 10th character is printed on each line of the screen.

3.73 RIGHT$

Purpose:
To return the rightmost n characters of string x$.

Syntax:
RIGHT$(x$,n)

Comments:

If n is equal to or greater than LEN(x$), RIGHT$ returns x$.

If n equals zero, the null string (length zero) is returned (see the MID$ and LEFT$ functions).

Example:

10 A$="DISK BASIC"
20 PRINT RIGHT$(A$, 5)
RUN
BASIC

Prints the rightmost five characters in the A$ string.

3.74 RND

Purpose:
To return a random number between 0 and 0.99999.

Syntax:
RND[(x)]

Comments:

The same sequence of random numbers is generated each time the program is run unless the random
number generator is reseeded (see RANDOMIZE statement).

x value is ignored if supplied.To get a random number within the range of zero through n, use the
following formula:

INT(RND*(n+1))

Examples:
PRINT RND
 0.513871

PRINT RND (1) 'prints two numbers due to the space between
RND and (
 0.175726 1

PRINT RND(-1)
 0.94763

PRINT INT(RND*101) 'prints random number 0 – 100
 53

3.75 SGN

Purpose:
To return the sign of x.

Syntax:
SGN(x)

Comments:

x is any numeric expression.

If x is positive, SGN(x) returns 1.

If x is 0, SGN(x) returns 0.

If x is negative, SGN(x) returns -1.

Examples:

10 INPUT "Enter value", x
20 ON SGN(X)+2 GOTO 100, 200, 300

MM-BASIC branches to 100 if X is negative, 200 if X is 0, and 300 if X is positive.

3.76 SIN

Purpose:
To calculate the trigonometric sine of x, in radians.

Syntax:
SIN(x)

Comments:

To obtain SIN(x) when x is in degrees, use

SIN(x*π/180).

Examples:

PRINT SIN(1.5)
 0.997495

The sine of 1.5 radians is 0.997495.

3.77 SPACE$

Purpose:
To return a string of x spaces.

Syntax:
SPACE$(x)

Comments:

x is rounded to an integer and must be within the range of 0 to 255. If the number is outside this
range error “Number out of bounds“ results.

Example:

10 FOR N=1 TO 5
20 X$=SPACE$(N)
30 PRINT X$; N
40 NEXT N
RUN
 1
 2
 3
 4
 5

Line 20 adds one space for each loop execution.

3.78 SPC

Purpose:
To skip a specified number of spaces in a PRINT.

Syntax:
SPC(n)

Comments:

n must be within the range of 0 to 255.

If n is greater than the defined width of the printer or the screen, the value used will be n MOD
width.

This function is similar to the SPACE$() function and is only included for Microsoft
compatibility.

Examples:

PRINT "OVER" SPC(15) "THERE"
OVER THERE

3.79 SPI

Purpose:
To send and receive a byte, word or long word using SPI protocol.

Syntax:
SPI(rx, tx, clock[, data][, speed])

Comments:

MM-BASIC is the master (i.e. it generates the clock).

rx is the GPIO port number for the data input (aka MISO master-input slave-output)

tx is the GPIO port number for the data output (aka MOSI master-output slave-input)

clock is the GPIO port number for the clock generated by MM-MASIC (aka CLK)

data is optional and is an integer representing the data byte to send over the data output pin. If it
is not specified the tx pin will be held low as if the data is 0.
In the CAN version of the software, data can also be in the form of a word (2 bytes) or a long word
(4 bytes). In this case the data to be sent should be entered as a HEX number (e.g. &H1234 or
&H12345678). If no data has to be sent, data should be set as &H0000 or &H00000000. Only 4 or
8 HEX characters are allowed, otherwise only the first 8 bits are sent.
The received data will be in the same format as the transmitted data (1, 2 or 4 bytes). The result will
be presented as a float, which will be accurate up to 1000000. A result of 4 bytes however can be up
to 4294967295. To get an accurate value of the whole response, two variables should be defined in
Basic: SPI_RX1 and SPI_RX2 (DIM SPI_RX1:DIM SPI_RX2). Now SPI_RX1 will contain the 16
MSB’s of the result and SPI_RX2 the 16 LSB’s.

speed is optional and is the speed of the clock. It is a single letter either H, M or L where H
is 500KHz, M is 50KHz and L is 5KHz. Default is H.

Examples:

10 SETPIN 1,2 'define Rx as input
20 SETPIN 2,8 'define Tx as output
30 SETPIN 3,8 'define clock as output
40 PRINT SPI(1,2,3,255,H) 'send FF and receive one byte
RUN
 255

3.80 SQR

Purpose:
Returns the square root of x.

Syntax:
SQR(x)

Comments:

x must be greater than or equal to 0.

Example:

10 FOR X=10 TO 25 STEP 5
20 PRINT X; SQR(X)
30 NEXT
RUN
 10 3.16228
 15 3.87298
 20 4.47214
 25 5

3.81 STEP

Purpose:
To define the step for the next value in FOR … TO … STEP … NEXT.

Syntax:
STEP

Comments:

See FOR for the use of this function.

3.82 STR$

Purpose:
To return a string representation of the decimal (base 10) value of x.

Syntax:
STR$(x)

Comments:

STR$(x) is the complementary function to VAL(x$).

Examples:

10 INPUT "TYPE A NUMBER: ", N
20 PRINT “THIS IS A”;LEN(STR$(N));” DIGIT NUMBER”
RUN
TYPE A NUMBER: 123
THIS IS A 3 DIGIT NUMBER

3.83 STRING$

Purpose:
To return

● a string of length n whose characters all have ASCII code j, or
● the first character of x$

Syntax:
STRING$(n,j)
STRING$(n,x$)

Comments:

STRING$ is also useful for printing top and bottom borders on the screen.

n and j are integer expressions in the range 0 to 255.

Example:

10 X$ = STRING$(10, 45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN

MONTHLY REPORT

45 is the decimal equivalent of the ASCII symbol for the minus (-) sign.

3.84 TAB

Purpose:
Spaces to position n on the screen.

Syntax:
TAB(n)

Comments:

If the current print position is already beyond space n, TAB goes to that position on the next
line.

Space 1 is the leftmost position. The rightmost position is the screen width.

n must be within the range of 1 to 255.

It is as though the TAB function has an implied semicolon after it.

TAB may be used only in PRINT or PRINT # statements.

Examples:

10 PRINT "HELLO" TAB(3) "WORLD"
RUN
HELLO
 WORLD

10 PRINT “HELLO” TAB(10) “WORLD”
RUN
HELLO WORLD

3.85 TAN

Purpose:
To calculate the trigonometric tangent of x, in radians.

Syntax:
TAN(x)

Comments:

To obtain TAN(x) when x is in degrees, use TAN(x*pi/180).
Examples:

10 Y = TAN(X)

When executed, Y will contain the value of the tangent of X radians.

3.86 THEN

Purpose:
To activate the THEN command in a single line IF … THEN … [ELSE] statement

Syntax:
THEN

Comments:

A statement starts with a command and further only functions, variables, constants, etc. The IF …
THEN … [ELSE] statement however starts a new statement after the THEN [and ELSE], also
if it is a single line statement. That is why the pseudo THEN and ELSE functions are created.
When they are detected, the THEN and ELSE commands are executed.

See further the IF command.

3.87 TIME$

Purpose:
To retrieve the current time.

Syntax:
TIME$

Comments:

The current time is fetched and assigned to the string variable if TIME$ is the expression in a
LET or PRINT statement.

TIME$ returns an 8-character string in the form hh:mm:ss.

The time is set to “00:00:00” at power up.

Examples:

PRINT TIME$
08:00:05

3.88 TIMER

Purpose:
To read TIMER value.

Syntax:
TIMER

Comments:

TIMER function returns the elapsed time in milliseconds (e.g. 1/1000 of a second) since reset. If
not specifically reset this count will wrap around to zero after 49 days.The timer is reset to zero on
power up and you can also reset it by using TIMER = command.

3.89 TO

Purpose:
To define the end value in FOR … TO … STEP … NEXT.

Syntax:
TO

Comments:

See FOR for the use of this function.

3.90 UCASE$

Purpose:
To return x$ converted to uppercase characters.

Syntax:
UCASE$(x$)

Comments:

x$ may be empty string.

Examples:

PRINT UCASE$(“qWeRTyUIop”)
QWERTYUIOP

3.91 UNTIL

Purpose:
To define the end of a DO … LOOP

Syntax:
UNTIL

Comments:
UNTIL is used at the end of a DO … LOOP

See DO for details.

3.92 VAL

Purpose:
Returns the numerical value of string x$.

Syntax:
VAL(x$)

Comments:

The VAL function also strips leading blanks, tabs, and line feeds from the argument string. For
example, the following line returns -3:

VAL(" -3")

The STR$ function (for numeric to string conversion) is the complement to the VAL(x$)function.

If the first character of x$is not numeric, the VAL(x$)will return zero.

This function will recognize the &H prefix for a hexadecimal number, &O for octal and &B for
binary.

Example:

10 INPUT “ENTER ZIP:”; ZIP$
20 IF VAL(ZIP$)<1000 OR VAL(ZIP$)>9000 THEN PRINT
"INVALID ZIP"
30 IF VAL(ZIP$) = 4000 THEN PRINT “THIS IS THE ZIP POST
CODE FOR THE CITY OF PLOVDIV WHERE DUINOMITE WAS BORN :)”

3.93 WHILE

Purpose:
To define the end of a DO … LOOP

Syntax:
WHILE

Comments:
WHILE is used at the beginning of a DO … LOOP

See DO for details.

3.94 XOR

Purpose:
Operator for logical XOR function

Syntax:
XOR

Comments:

XOR stands for exclusive or.

XOR is a bitwise operation

Example:

PRINT 3 XOR 6
 5

Both 3 and 6 have the 2nd bit equal (so 0) and the 1st and 3rd different from each other (so 1).
Result 5

