1. The basic CAN commands (by Frank Voorburg, Feaser)

CAN Commands

CANOPEN speed

Configures the CAN controller for the specified communication speed and synchronizes to the
CAN bus. The message reception acceptance filter is configured to receive all valid CAN message
identifiers, both 11-bit STD (0..7FFh) and 29-bit EXT (0..1FFFFFFF).

The communication speed should be in the range 10 kbps to 1 Mbps.

Example:

CANOPEN 500000

CANCLOSE

Closes the connection with the CAN bus by placing the CAN controller back into its configuration
mode.

Example:
CANCLOSE

CANSEND id, type, len, data(), ok

Places a CAN messages in the transmit queue and the moment a CAN transmit message slot
becomes available, the CAN message is send onto the CAN bus.

Argument 'id' sets the message identifier and 'type' the identifier type. Set 'type' to O for a 11-bit
STD message identifier (most commonly used) or to 1 for a 29-bit EXT message identifier. The
number of data bytes in the messages is set by argument 'len'. This can be anywhere in the range
1..8. The actual message data is passed as a 1-dimensional array called 'data’.

Pass in a variable for argument 'ok' to determine if the message transmission was successful. In this
case 'ok' holds the value 1. If it holds the value 0 then either the transmit queue is full so you can try
a little later again or the connection with the CAN bus has not yet been opened (see command
CANOPEN).

Example:

100 DIM txData(2) : DIM txOk

110 CANOPEN 500000

120 txData (0) = &H55

130 txData(l) = &HAA

140 CANSEND &H123,0,2,txData (0),tx0Ok

150 IF txOk = 0 THEN PRINT "Could not send CAN message"
160 CANCLOSE

CANRCV id, type, len, data(), ok

Checks if a CAN message was received and is stored in the internal receptio queue.

The message identifier is stored in the variable that is passed as argument 'id". The identifier type is
stored in the variable that is passed as argument 'type'. A value of 0 means that it is a 11-bit STD
identifier and a value of 1 means that it is a 29-bit EXT identifier. The number of data bytes in the
messages is stored in the variable that is passed as argument 'len'. The actual received data bytes is
stored in the 1-dimensional array that is passed as argument 'data’.

Pass in a variable for argument 'ok' to determine if a messages was received. In this case 'ok' holds
the value 1. If it holds the value 0 then either there was no message present in the reception queue
or the connection with the CAN bus has not yet been opened (see command CANOPEN).

Example:

100 DIM rxId : DIM rxType : DIM rxLen : DIM rxData(8) : DIM rxOk
110 CANOPEN 500000

120 DO

130 CANRCV rxId,rxType,rxLen,rxData(0), rxOk

140
150
160
170
180
190

IF rxOk = 1 THEN

PRINT "CAN message received"
EXIT

ENDIF

LOOP

CANCLOSE

2. The extended commands (by Kees Zagers, SI-Kwadraat B.V.)

The extended commands are made upward compatible with the standard commands.

The extended version is a specific firmware. It uses the open DMBasic version 2.7, which is open
for every user. To make it fit, the Gameduino commands are removed. To work with the CAN
firmware a license has to be installed. If no license is installed only the basic commands will work.
The license is determined per unit. If the license is correct all functions available, otherwise only
available for demonstration.

At initialisation license, to be used FIFO space and optional protocol are determined. The license
cannot be changed by the user; the to be used FIFO can be changed. The original number of
FIFO’s is 64. If this is the maximum which is needed, no extra memory is reserved for the FIFO's.
However if the value is bigger (65 - 1024) a Basic array is created, CANMESSAGEFIFOAREA
with a dimension of 4 * No. of FIFO's, eg at 1024: DIM CANMESSAGEFIFOAREA(4096).

This array is created at the first CANOPEN or CANFIFO statement in a program or in the
command shell. The variable CANMESSAGEFIFOAREA is forbidden in Basic in this case.

If an optional protocol is specified in the license file, this protocol is used as custom protocol in the
CANLOG command. Optional protocols are available from SI-Kwadraat, but can also be created
or extended by the user using an online program on the SI-Kwadraat site.

Timestamps are used in commands like CANLOG, CANVIEW and CANOBJECT. They are derived
from in the internal timer in the CANcontroller. This timer is activated by the CANOPEN
command. Also the resolution can be controlled by CANOPEN. Default resolution is 100uS. The
disadvantage of this timer is the fact that it only has a 16 bit counter (0 - 65535), which means, that
it is reset every 6.5 sec. In CANLOG and CANVIEW the timestamp is corrected in the firmware.
This means as long as at least one message occurs within 6.5 seconds the timestamp is corrected.
This is not the case in the CANOBJECT command, because the timing of these objects can be
programmed by the user. Therefore the user has to correct the timestamps in Basic if necessary.

Overview of the BASIC commands:

1. CANOPEN <speed>[,<special>][,<ts resolution>]
(special and ts resolution added; 1.2 extra functionality in speed)
2. CANCLOSE
(not changed)
3. CANSTATUS
(new; 1.2 canport added; 1.4 canobjects added)
4. CANFIFO <fifono (0-31)>,<rx/tx (0/1)>,<length (1-32)>
(new)
5. CANMASK <maskno(0 - 3)>[,<std mask(0-2047)>][,<ext mask(0-262143)>]
(new)
6. CANFILTER <filterno (0-31) >[,<std id(0-2047)>][,<ext id(0-262143)>]
(new)
7. CANLINK <filter no (0-31)>,[<enable (0/1)>,<mask no>,<fifo no>]
(new)
8. CANSEND <id>,<type>,[<id ext>,]<len>,<data()>,<ok>
(type extended; id ext added; 1.1 bugfix)
9. CANRCYV <id><type>[,<id_ext>],<len>,<data()>,<ok>
(type extended; id ext added)
10. CANLOG [#<fileno>][,<format>][,<fifono>][,<period>][,<lineno>]
(new; 1.1 functionality extended)
11. CANREG [<regno (0 — 180)/(500-680)|/(1000-2023)||(3000-4023)>]
(new; 1.1 upgrade with write; 1.2 upgrade with FIFO registers from CANFREG)
12. CANFREG [<fregno (0 — 1023)>] or [<fregno (0 — 2047)>] with CANTEST
(new; 1.1 upgrade with write; deleted in 1.2)
13. CANRESET [canport]
(new; extended in 1.2)
14. CANVIEW [<format>][,<fifono>][,<period>][,<lineno>][,<interval>]
(new in 1.2)
15. CANBRIDGE [[#]<fileno>]
(new in 1.4)
16. CANREPLAY [#<fileno>][,<fifono>][,<format>]
(new in 1.4)
17. CANOBIJECT [#<fileno>][,<fifono>][,<timer>]
(new in 1.4)

Overview of the BASIC variables

o CANMESSAGEFIFOAREA: Array dimensioned for CAN buffer; don’t use in BASIC

o CANFLOATI, -2, -3: 3 Basic variables which can be used in the custom protocol (see 3.0)

® CANTEST: Array variable used by the commands CANSTATUS, CANFIFO, CANMASK,
CANFILTER, CANLINK, CANREG, CANVIEW and CANOBIJECT. If this array is
defined the output of the command is written in this array and not on the screen (see 3.1).

o CANPRETRIGGER, CANPOSTTRIGGER, CANTRIGGERERRCNT, CANTRIGGERID and
CANTRIGGEREXTID: Variables used in triggered logging (see 3.2).

o CANOBJECTPERIOD: Variable with period time (in ms) of displaying/logging of the
objectview in CANLOG

In version 1.1. the following variables have been added:

® CANBLINK: Variable when >0 used for blinking of application LED during CAN
communication

CANCONTINUE: If used and !'=0 CANLOG continues where it ended the last time
CANERRCNT: If used contains the maximum value of the Rx Error Counter after CANLOG
CANOVFCNT: If used contains the number of buffer overflows during a CANLOG
CANPERIOD: Can be used both for setting or reading the period time of CANLOG
CANLINENO: Can be used both for setting or reading the number of lines of CANLOG
CANLOAD: 1f used contains the overall busload during CANLOG

CANLOADMAX: 1f used contains the maximum busload during CANLOG
CANLOADMAXTIME: 1f used contains the time when maximum busload occured.

In version 1.3. the following variable has been added:
o CANENDOFLINE: Variable when >0 used for line end during CANLOG
In version 1.4. the following variables have been added:

CANEVENTINT: Variable when >0 used for the script timer interrupt in custom protocol.
CANOBJnnID: Variable used for storage of ID of object nn (00 - 31)

CANOBIJnnCTRL: Variable used for storage of CTRL of object nn
CANOBIJnnDATA(8): Variable used for storage of DATA of object nn (array of 8)
CANOBJnnOK: Variable used for result of Tx or Rx

2.1 CANOPEN

CANOPEN still has the speed parameter. The routine to set the speed has been improved. Now we
get a better match for all bitrates. Please notice that the lowest bitrate which can be set with this
hardware is 25 kbit/sec and not 10 kbit/sec. This is due to the 80 MHz X-tal which has been used.
When CANOPEN runs for the first time and CANFIFO has not been executed yet, it will setup two
FIFO's, both 32 messages deep. The first one for sending messages the second one for receiving.
Just as it does in the standard version. Standard the receiving filter is set to receiving all messages.
Standard also the timestamp is enabled and set to a resolution of 100 uS. This is used in CANLOG.
Two extra optional parameters are added. Since version 1.2 all parameters are optional and the
speed parameter has been extended with more functionality.

In version 1.3 some delay is added after the command and the status is checked.

CANOPEN [<speed>[,<special>[,<ts resolution>]]]

<speed> is by default the parameter which specifies the CAN bitrate in bits/sec. The range is 25000
up to 1000000. Since version 1.2 it is also possible to specify the bitrate in kbits/sec (25 - 1000).
The default value of <speed> is 0. This means the value is not changed. In this way one can change
the <special> or <ts resolution> parameter without having to know the actual <speed>.

The values 1-7 are used for autobauding and the values 8-24 to change configuration and control
registers of the CAN controller in a very specific way. See table 3.2 (experienced users only)

<special> is used to open the CAN-port in a non-standard way. Speed must be specified in this
case. The value of special can be 0 to 255 (8 bits) where all bits have their specific meaning:
<oowtmsjj>.
The 2 LSB's (jj) are the two bits to configure the SJW (synchronisation jump width):
00 : 1 clock cycle (default) 01 : 2 clock cycles
10 : 3 clock cycles 11 : 4 clock cycles
The next one (s) determines the number of samples:
0 : 1 sample (default)
1 : 3 samples
The next one (m) determines the position in the period for sampling:
0 : 75% (default)
1:80%
The next one (t) determines the availability of timestamps:
0 : timestamps available (default)
1 : timestamps off
The next one (w) enables or disables the wakeup facility
0 : disabled (default)
1 : enabled
The two most significant bits (00) determine the operation mode:
00 : normal operation (default)
01 : loopback mode (also own tx messages can be received)
10 : listen-only mode (no errorframes; no ACK)
11 : all message mode (all messages, also fault ones, are received)

The third optional parameter (<special> must also be specified in this case) sets the timestamp
resolution. This value ranges of 1 uSec minimal to 800 uSec maximal. Default value is 100 uSec.

2.2 CANCLOSE

CANLOSE has no additional features.

2.3 CANSTATUS

CANSTATUS displays the status of the CAN controller. No further parameters (see also 3.1).
CANSTATUS

The control register: Serial no., Port no., Timestamps (on/off), Mode. Updated in version 1.2/1.4.
The config register: Bitrate, sample point, SJW and no of samples.

The FIFO's are marked T (Tx) or when Rx: _ (not active), + (>1), 1-9 (no of links), 0 (> 9 links).
FIFO status shows if data is available in the FIFO (for Tx always 1; for Rx 1 if data is not read)
FIFO rxlost shows the FIFO's which have had an overflow (1).

Next line shows the actual values of Rx and Tx error counters.

In version 1.4 the status line of the CANOBIJECT is incuded here. 1 HEX byte status for every
FIFO, meaning: 4 LSB’s: fileno; Bit 5: file on/off; Bit 6: Basic parameter on/off; Bit 7: Tx/Rx; Bit
8: ON/OFF. After all objects the CANport of the objects is listed.

If an optional protocol is specified the name of this protocol is on the last line.

2.4 CANFIFO
CANFIFO is the command to change the FIFO configuration. It has three optional parameters.
CANFIFO [<fifono (0-31)>][,<rx/tx (0/1)>][,<depth (1-32)>]

CANFIFO without further parameters will give the status of all 32 FIFO’s (see also 3.1).

Default the FIFO 0 is configured for Tx (length 2) by CANOPEN and FIFO 1 for Rx (32). All other
FIFO's are default for Rx with depth 1. However as long as they are not enabled by any link to a
filter (CANLINK), they will be disabled.

CANFIFO gives the opportunity to change any FIFO to any mode (Tx or Rx) with any length
(1-32). If CANFIFO is entered with only the fifono, the FIFO is reset to rx and depth 1. If it is
entered without the depth parameter, depth will be reset to 1.

Please keep in mind that the available space can be limited by the buffers in the license file.

2.5 CANMASK
CANMASK configures the masks which are used to filter the received messages.
CANMASK [<maskno(0 - 3)>][,<std mask(0-2047)>][,<ext mask(0-262143)>]

CANMASK without parameters will show the configuration of the masks (see also 3.1).
CANMASK with only the number will sets the mask to all 0, meaning all bits are not relavant for
filtering.

CANMASK with number and std mask will mask the bits in the standard part which are set to 1. It
will not mask the IDE bit itself.

CANMASK with number, std mask and ext mask masks the 1 bits in both standard and extended
part. Also the IDE bit is masked.

2.6 CANFILTER
CANFILTER configures the filters, which are used to filter the received messages.
CANFILTER [<filterno (0-31) >][,<std id(0-2047)>][,<ext id(0-262143)>]

CANFILTER with no parameters will show the status of all filters (see also 3.1).
CANFILTER with only the number sets both std and ext id to 0.

CANFILTER with number and std id sets the standard part to the id.
CANFILTER with number, std id and ext id sets the complete id.

2.7 CANLINK

CANLINK links a filter to a mask and a FIFO. When all values are filled in, the link is also
activated or deactivated.

CANLINK [<filter no (0-31)>][,<enable (0/1)>][,<mask no>][,<fifo no>]

CANLINK with no parameters will show all links (see also 3.1).

CANLINK with only the filter no. disables the filter, no change in mask and FIFO

CANLINK with filter no and enable will enable or disable the link.

CANLINK with filter no, enable and mask will also set the mask

CANLINK with filter, enable/disable, maskno and fifono sets the complete link, including FIFO.
A filter can only be linked to one FIFO; a FIFO however can be linked to more than one filter.
Before a new link can be made the former link has to be disabled.

2.8 CANSEND

CANSEND still uses the same parameters. Only one optional parameter (id ext) has been added.
The type parameter has been extended.

CANSEND <id>,<type>,[<id ext>,]<len>,<data()>,<ok>

The new type consists of 16 bits (<f><pp><IlllI><nnnnn><s><r><e>), where

f = Fill bit: 1 means not really a sending action, but fill only

pp = Send priority bits in FIFO

11111 = The location address in the FIFO; only used at specific write
nnnnn = The Fifo no.

s = The special bit when set; special actions can be undertaken

r = RTR bit; when s=0 used as RTR bit; s=1 the RTR enable bit is set
e = Extension bit; when e=1 the <id ext> contains the 18 LSB of ID

The optional <id ext>. The problem in Basic is that it only has single precision floating point
variables. So the maximum number which can be calculated without exponential description is
999999. The extended ID however can go up to 536870911. That is why we advise to split the ID in
11 (std) and 18 (ext) parts, when the ID is calculated. If ID is used as a constant it is no problem to
go up to 536870911 in ID (was bug in 1.0; repaired in 1.1).

The kind of SEND action is determined by f, s en r bit

st f

00 0 : The standard Tx action: message is added to FIFO and sent
00 1: Message is added to FIFO, but not sent yet
010:As00O0but with RTR bit set

011:As00 1 butwith RTR bit set

1 0 0 : Send only action; all messages in FIFO are sent

1 0 1 : Fills the specific location 1111l with the message

1 10 : Sets the RTR enable bit for this FIFO

1 11 : Reset RTR enable bit; Update priority with pp; Reset FIFO

2.9 CANRCV

CANRCYV still uses the same parameters. Only one optional parameter (id ext) has been added. The
type parameter has been extended.

CANRCYV <id>,<type>[,<id_ext>],<len>,<data()>,<ok>

The new type consists of 16 bits (<g><ss><ttttt><nnnnn><o><r><e>), where
e g =global type; g=1 (set before CANRCV) to receive the message in the new format.
e ss = specific global type:

e 00 The filter no. which was hit for this message included in ttttt

e 01 The 5 LSB's of timestamp incuded in ttttt

e 10 The 5 MSB's of timestamp included in ttttt

e 11 The complete 16 bit timestamp in type (all other info lost)

ttttt = The result of ss

nnnnn = The Fifo no.

o = Overflow flag 0=1 when the overflow flag was set in the FIFO

r = RTR bit; when r=0 a data frame is received; r=1 an RTR frame

e = Extension bit; when e=1 the <id ext> contains the 18 LSB of ID, if id ext available.

2.10 CANLOG

CANLOG is the command to be used for analysis of a bus system. It can show the data on a
screen/USB terminal as well as write it to a file.

CANLOG [#<fileno>][,<format>][,<fifono>][,<period>][,<lineno>]

All parameters are optional. If a parameter is to be used, all previous parameters should be filled in
also.

e #<fileno>: Fileno has to be used as in PRINT #. Fileno=0 (default) means write to
screen/USB.
<format> Data format, with also selection of trace/object view and optional protocols
<fifono> 0 -31; default value: FIFO 1
<period> The measument time in ms.

e <lineno> The number of CAN messages to be logged.
CANLOG can be stopped in four ways:

e CTRL-C: When used on the command line this will come back to the basic prompt.

e ESC does the same as CTRL-C, however this can be used within a BASIC program.

e <period>: When period is given (>0), it will stop after this period time in ms.

e <lineno> When lineno is given, it will stop after the no of messages.
A combination of <period> en <lineno> is possible. It will stop on the event which comes first. If
only <lineno> is used, period should be set to 0. See also the variables CANPERIOD and
CANLINENO. If <period> or <lineno> are used <ESC> is disabled (since v1.3).

The formats from O to 31 are the trace formats:

0-7: The standard trace formats

8- 15: As 0 - 7 however only registration during pressing of USER button
16 - 23: As 0 - 7 however triggered by SPACE key

24 - 31: As 0 - 7 however, triggered by a CANbus error or a pre-defined ID

If the triggered formats are used, the BASIC variables CANPRETRIGGER and
CANPOSTTRIGGER can be used to determine the number of messages before and after the trigger
moment, which are included in the log. If CANPRETRIGGER is not defined it is supposed to be 0
and if CANPOSTTRIGGER is not defined the logging will continue until it is stopped by one of the
other methods. The maximum value of pre-triggered messages is the depth of the buffer which is
used for logging. The messages which are in the buffer are copied to another bufferarea to prevent
lost messages. The pre-triggered messages are displayed or logged after the post-triggered
messages.

If the formats 24-31 are used also an optional variable CANTRIGGERERRCNT is available, which
has the value or the Rx error counter when the trigger occurs (1 by default). CANTRIGGERID and
CANTRIGGEREXTID (for extended IDs) can be used to determine the ID to trigger on rx ID.

The existing trace formats are:
e (. The Basic Microchip format (16 byte per message HEX)
. The Basic Microchip format (bytes separated by spaces)
. The UNICANNER format including error information.
. The UNICANNER error only format
. The HEX string format
. The DEC string format
. The ASCII string format
. The Custom protocol format

e 6 6 06 0 o O
NN L bW~

If format is greater than 31 the object format is chosen. The format can now be divided as follows:
<dddddddd><r><e><f><cc><pp><s>

In the object view the upper free FIFO space is used for storage of the objects. In the small object
size one FIFO location (16 bytes) is used per object. In the large object size two FIFO locations (32
bytes). In the small object view only ID, CTRL byte, databytes and no of messages are displayed.
In the large object view we see in addition the last timestamp, the first timestamp, the last interval,
the smallest interval and the largest interval..

<f>: The switch between trace and object format; must be 1 for object.

<s>: The size of the object; 0 means the default large; 1 the small size

<pp>: The protocol for data: 00 means HEX; 01 DEC; 10 ASCII; 11 no data.

<cc>: The presentation of the custom protocol line (if any custom protocol is defined)

00 No custom protocol show

01 Custom protocol as additional line

10 Custom protocol on first line, no data

11 Custom protocol on first line, no ID, CTRL and data
<dddddddd><r><e>: Used for optional object specification; by id, but also by data, RTR and

IDE. The first d is first databyte D1; the last is D8. r and e: RTR/IDE.

Default they are all 0 , which means only ID object definition.

CANLOG has a timestamp on every received CAN message. The timestamp from the CAN module
of the PIC32 controller is used. The default resolution is 100 uS, which can be changed by
CANOPEN. As this is a 16 bit number, after about 6.5 sec it will start over again. In the software
this is compensated: if timestamp < prev timestamp then add 65536. This works only if messages
are seen in every period of 6.5 sec, otherwise gaps in the time are the result.

Two major additions have been added in CANLOG in v1.1:

To show activity on the bus during CANLOG, the application LED can be used for blinking. If the
variable CANBLINK has a value >0 the USER LED will toggle between ON and OFF at the
number of messages which is given to CANBLINK.

If at least one of the basic variables CANLOAD or CANLOADMAX is defined, a busload
measurement is done during CANLOG. CANLOAD contains the overall busload in % and
CANLOADMAX the maximum busload during 1 sec. If also the variable CANLOADMAXTIME
1s defined, this variable contains the second when the maximum busload occured.

Also some additional basic variables are added:

Normally every time CANLOG is called the message number and the timestamp are reset. If the
variable CANCONTINUE is defined and has a value other than zero, the log is continued from
what was logged before. The CANLOAD values however are only based on the last run.

CANPERIOD and CANLINENO can be used in stead of the same parameters in the command.
However they have a double function. If they are defined they will contain the actual measuring
period in ms and the actual number of lines at the end of the CANLOG. Please be aware to reset the
values before the next CANLOG. Also when the parameters in the command are used, they will
overrule the variables.

CANERRCNT and CANOVFCNT are also two new variables. If defined they contain resp. the
maximum value of the CAN RX error counter and the value of the number of buffer overflows
which occured.

One variable has been added in version 1.3: CANENDOFLINE. Default when the parameter is not
defined or zero, every line in the CANLOG trace is ended by CRLF. If CANENDOFLINE=1 the
line is only ended by CR, which gives an overlay for every line on the screen. If
CANENDOFLINE=2 the line is ended by 2 spaces. [f CANENDOFLINE=3 no characters at all are
placed at the end of the line. This parameter can be very usefull if the custom protocol is used.

In version 1.4 the custom protocol is extended and better described in chapter 3.0 of this manual.
Also the variable CANEVENTINT has beed added. This sets an event bit, which can be used in the
custom protocol.

2.11 CANREG

CANREG is implemented for debugging only (see also 3.1).

CANREG [<regno (0 — 180)[|(500-680)>] (changed in version 1.1 and 1.2)

It shows the actual hex value in the CAN register(s) with regno when regno<181.

If CANTEST has been made active the values 500-680 can be used to set the registers 0-255 to the
values as given in CANTEST(0) and CANTEST(1).

See Microchip datasheet for details about the registers.

2.12 CANFREG

CANFREG is implemented for debugging only (see also 3.1).

In version 1.2 this command is deleted and the CANREG command is used in stead with higher
values for the registers.

CANREG [<regno (1000-2023)||(3000-4023)>]

It shows the actual hex values in the FIFO register(s) 0 to 1023 if 999<regno <2024.

If CANTEST has been made active the values 3000-4023 can be used to set the registers 0-1023 to
the values as given in CANTEST(0) up to CANTEST(7).

See Microchip datasheet for details about the FIFO registers.

2.13 CANRESET
CANRESET is a command which should be handled very carefully.
CANRESET [<canport>]

This command will initialise the complete CAN configuration again. So if you changed the buffer
size or the protocol in the license file, the new parameters will be activated after this command. The
command however will not reinitialise the memory. So if you started with a buffer size of 1024 and
go back to 64, you also have to give the Basic command ERASE CANMESSAGEFIFOAREA or
CLEAR to free the memory again.

In version 1.2 the CANRESET is extended with a parameter. By default this parameter will be 0.
This means the standard CAN interface on the hardware is used. This is directly available. However
the PIC32 controller has a second CAN interface internally. The pins are available on the Arduino
and GPIO extensions of the hardware, however it is not buffered with any CAN transceiver. The
pins are shared on the connectors with digital I/O pins 0 and 1 (PIN(11) and PIN(12) in Basic) and
also the serial port (COM1 or COM4 in Basic). These are not available if the second CAN port is
used. See also notes in 3.5 of the Duinomite manual.

CANRESET 1 disables the standard CAN port and enables the second one. All other commands are
now available on the other CAN port.

If one of the two CANports are enabled and also switched on by the CANopen command, the other
CANport can be activated in parallel by the CANRESET 2 command. This will automatically
detect which port is already running and will now reset to the other port. In this case nothing can be
changed on the first port anymore. The 2nd port can be configured now. This is new in version 1.4.
See also CANBRIDGE and CANOBIJECT. These are the only two commands which benefit from
this option.

2.14 CANVIEW
CANVIEW is a new command in version 1.2
CANVIEW [<format>][,<fifono>][,<period>][,<lineno>][,<interval>]

CANVIEW gives an overview of a running CAN network on one line. The parameters which are
displayed are: the number of messages, the number of ID’s, the busload and the error situation.
Values are displayed periodically, both over the specific period and overall. The optional parameter
<interval> can be used to set the measurement period in ms (default value 1000).

The optional parameters <fifono>, <period> and <lineno> are used in the same way as in the
CANLOG command. The optional parameter <format> is used for the format of the line.

The default value 0 displays all value in one line as: <SMILPTilcCEO> with:
The measurement time in seconds

No of messages

Actual busload in the last interval

The busload overall

The maximum busload

Time of maximum busload

The number of different message ID’s in the last interval *

The total number of different ID’s *

The maximum value of the Rx Error Counter in the last interval

The maximum value of RxC overall

The total number of errors (in fact the number of increments of the RxC) **
The overall number of overflows

omaae T ALT»ZR

If format has the value 1 to 12 one of the above parameters is shown in the order SMILPTilcCEO.
Format = 13: Busload graphical: Dynamic scaling with values A, L, and M

Format = 14: Error Counter value graphical: Scale 0 - 136 with values c and C

Format = 15: The values 1 to 12 sequential. Every parameter is displayed during one period.

* To store the used ID’s the upper memory area of the FIFO space is used as in CANLOG. Default
30 FIFQO’s are free for this purpose. Each FIFO can store 4 ID’s. So a maximum of 120 different
ID’s can be stored. If this maximum is exceeded, the value 999 is stored and the ID read is stopped.
** If the increment of the error counter > 8 the error will probably be caused by the test system

1itself and therefore this value is set to the maximum value 9999. The user should check for the
correct physical and datalink settings of the testbox.

2.15 CANBRIDGE
CANBRIDGE is a new command in version 1.4
CANBRIDGE [[#]<fileno>]

To activate the CANBRIDGE command the following sequence of commands should have taken
place:

CANRESET, CANRESET 0 or CANRESET 1.(setting the CAN port)

Optional: CANFIFO (FIFO 0 should be configured for Tx, FIFO 1 for Rx)

Optional: CANFILTER/CANMASK/CANLINK (enable filters on the 1st CAN port)
CANOPEN bitrate, <special>, <timestamp> (if special is used: set to Normal operation)
CANRESET 2 (we switch to the other CAN port now; this will now be the one for all other
commands)

Optional: CANFIFO (FIFO 0 should be configured for Tx, FIFO 1 for Rx)

Optional: CANFILTER/CANMASK/CANLINK (enable filters on the 1st CAN port)
CANOPEN bitrate, <special>, <timestamp> (if special is used: set to Normal operation)

CANBRIDGE can now be started and all messages on CANport 0 will be copied to CANport 1 and
vice versa. Ofcourse when filters are active, these filters decide which messages are actually copied.
If the optional <fileno> is included in the command, logging is done conform the UNICANNER
format (format 2 in CANLOG). 0 or #0 will do a screen logging 1 (#1) up to 9 (#9) file logging to
the file which is opened for input by this number.

The Basic parameters CANPERIOD, CANLINENO, CANCONTINUE, CANENDOFLINE and
CANBLINK can be used as in CANLOG. <ESC> or <CTRL-C> can be used to stop the
CANBRIDGE command.

2.15 CANREPLAY
CANREPLAY is a new command in version 1.4
CANREPLAY [#<fileno>][,<fifono>][,<format>]

The CANREPLAY command can be used to send a logged file on the CANbus again. The logfile
must be in the UNICANNER format.

The file opend for output by <fileno> (1 by default) will be sent on the CANbus, using <fifono> (0
by default).

If <fifono> is specified it is possible to specify also the <format> parameter. If this is done the file
is logged to the screen in the format as it has been specified in CANLOG.

The Basic parameters CANPERIOD, CANLINENO, CANCONTINUE, CANENDOFLINE and
CANBLINK can be used as in CANLOG. <ESC> or <CTRL-C> can be used to stop the
CANREPLAY command.

2.16 CANOBJECT
CANOBIECT is a new command in version 1.4
CANOBIJECT [#<fileno>][,<fifono>][,<timer>]

The CANOBJECT command has been added to perform send and receive on the CANbus in the
background. Once an object has started it will continue running until it is stopped again with the
same CANOBJECT command.

A total of 32 CANOBIJECTS can run in the background. Every CANOBJECT is linked to an unique
FIFO. So by default only 2 objects are active (Object 0 for Tx and object 1 for Rx). If more objects
are needed they should be configured first by the CANFIFO and CANLINK (to be active for Rx)
commands. Please keep in mind that the objects are scanned sequential starting at 0 and ending as
soon as an inactive FIFO has been detected. An object is inactive when the timer is set to 0.

As the objects are linked to the FIFO’s it is obvious that we have Tx and Rx objects. The values of
the object can be linked to Basic variables. The following variables can be declared (DIM) for this
purpose: CANOBInnID, CANOBInnCTRL, CANOBJnnDATA(8), CANOBJnnTS. nn should be
replaced by the FIFOno. The DATA array contains the databytes. The CTRL parameter by default
the DLC, added with 64 when the RTR is activ and added with 128 when EXT is activ. The ID
contains the identifier and TS the timestamp of the last object action (see comment on timestamps
in 2.0). As the floating point numbers in Basic are only accurate up to 1000000 and the extended
identifier can go up to 536870911, it has been decided that the millions of the ID are multiplied by
1000 and added to the CTRL parameter. So a message with ID 536870911 and 8 bytes of data will
have: ID=870911 and CTRL=536136 (136=128+8; 536 has to be multiplied by 1000000 and added
to ID).

When all Basic parameters are defined for a Tx object, the object will be sent with these parameters.
Otherwise the Tx FIFO can be confgured by the CANSEND command (fill only). In this way also
multiple messages can be sent by one object. When the Basic parameters are defined for an Rx
object, they will be refreshed with every new message for this object. Please keep in mind that all
parameters have to be available, otherwise the object will be handled without the Basic parameters.

The timer is linked to the millisecond timer as used in Basic (TIMER). So the minimum repeat time
for an object is 1 ms. By default the timer for Tx objects is set to 1000 (Tx every sec) and for Rx
objects to 1 (check for messages every 1 ms). Any other value can be given in the optional
parameter for every object. The command can be used as toggle between default and off. As the
default object (no FIFO specified) is object 0, one can define all objects and after that just toggle
them with the command CANOBJECT, because timer0=0 means inactive and also the other objects
in this case. If we want only object 0 inactive and all the others still running, we should give the
object a high timer value, e.g. 1000000000 or simply define it without BASIC parameters and
empty FIFO (no CANSEND).

By specifying a fileno, the object is logged in the UNICANNER format. #0 means logged on the
screen, a number #1 up to #9 in a file when it is opened for OUTPUT before. Don’t forget to close
the file.

The Basic parameter CANBLINK can be used to toggle the green LED.

A counter is used to register all objects which occur, both a successfull Tx as Rx. This counter can
be read by the reserved command CANOBJECT 32 (fileno and timer are irrelevant). The value of
the counter is returned. If the basic variable CANOBJCOUNTER is defined, the value will be
stored in this variable. This variable will only be refreshed after a new CANOBJECT 32 command.

As the CANOBJECTSs work in the background it is possible to combine them with other CAN
commands. However this can lead to strange situations, e.g. when working with rx-objects and the
CANLOG command in parallel. Some messages can be achieved by the CANLOG command and
others by the CANOBJECT.

If two CAN ports are available it would be nice to send objects on one port and log them on the
other port. Therefore it is possible to start the objects on one port and switch to the other port with
CANRESET 2. Now we can use all the other CAN commands on the other port. At the first
CANOBJECT command the to be used CAN port for all CANOBJECTs is defined. This can only
be reset by going back to this port by CANRESET 0 or CANRESET 1. All objects are reset in this
way.

Warning 1: As the CANOBJECT is linked to the millisecond timer it can influence the
behaviour of the real-time clock. If the handling of the objects exceeds 1 ms, the next ms
interrrupt will be lost. It is known that if logging is activ that the handling exceeds 1 ms, so
use logging only for testing and not for an application running in real-time.

Warning 2:Don’t use any other CAN Tx or Rx command if the object on that specific FIFO is
activ. The behaviour becomes unpredictable otherwise.

CANOBIJECT can also be used as a function to get the status:
status = CANOBJECT(objectno)

For the objects 0 to 31 it will give the value 0 if it is not active and the value of the lower 16 bits of
the first address of the FIFO for this object. The higher 16 bits can be read by the CANSTATUS
command. Objectno 32 will give the value of the objectcounter.

Examples in basic:
> counter = CANOBJECT(32)
>IF CANSTATUS(0) > 0 THEN POKE &HA000, CANSTATUS(0)+8, PIN(0)

The last Basic instruction will replace the databyte 0 in the FIFO by the actual value of PIN(0). In
this example we use the default configuration with 64 FIFO’s and FIFO 0 set as TX FIFO. If the
FIFO’s are in the Basic memory area, the first parameter will probably be &HA0O01. Using the
POKE command has quite some risk, but it is much faster than searching for the Basic parameter
everytime.

3.0 DESCRIPTION OF THE CUSTOM PROTOCOL

The license file can be extended with a custom protocol. Only one protocol can be active, and this
protocol will be loaded automatically at bootup. Protocols are described in a readable scriptfile, but
have to be converted in a low level machinecode to be read from the runtime CANLOG command.

An on-line utility can be used to convert the protocol script to the embedded code in the licence file.

The machinecode consists of 6 relevant bytes per line: The first one is called the command byte and
is specified below; the second one the variable, 3 and 4 are reserved for a constant and 5 and 6 for a
jump to another line; in fact the offset of the line. Allthough only 6 relevant bytes are on a line,
every line in principle has 10 bytes. This had to be done, because the code is written on the A-drive
and if a byte has the value 255, the next byte is skipped. This is compensated in the 4 non-relevant
bytes.

If a protocol is added to the license file, two basic commands are extended in fact:

CANSTATUS has an additional line where the name of the protocol is listed.

CANLOG has the custom protocol options enabled and the data both in trace as in object format is
converted to the chosen format.

The script has four types of commands:

1. The SPECIAL commands. Used for begin and end of the script. The start command has the
name of the protocol included. This is displayed in CANSTATUS. Also special commands are
made for floating point variables and since version 1.4 for reading and writing I/O pins, reading the
keyboard, configure and send a CAN message and reading and configuring a timer (special values
64 up to 212).

2. The calculation command. One of the 16 user variables gets the value of a calculation.
Calculations can be done with only 2 parameters. The first parameter is always a variable. It can be
one of the user variables or one of the CAN variables. The second variable can be either a constant
value (decimal, hexadecimal or binary) or also one of the user variables.

3. The write command. This command is used to fill the actual protocol line. The parameter of the
write command can be some text or a user or CAN parameter.

4. The if command. This command is used to make a jump in the script on a certain condition. The
condition has two parameters. The first one is either a user or a CAN variable. The second one can
also be such a variable or a constant value (decimal, hexadecimal or binary).

All commands are prefixed by a linenumber and are in principle ended by a ":" and a CRLF. After
the ":" can be an optional linenumber to jump to. This is always used in the if command where it is
used to jump to if the condition is true. However it can also be used in every other command. Based
on this syntax every user specific protocol can be realised.

16 user variables can be used, numbered 0 to 15.

Variable 15 has a specific function.
In the SPECIAL commands the variable gets an error value:

0. No error
1. No key pressed
2. Pin configuration error
3. Pin out of range error
4. Nota Tx Fifo
5. Tx Fifo limit exceeded
6. Tx parameter out of range
7. No messages in Tx Fifo

If used in Calculation it is possible to enter a low level command. See at CALCULATION
commands how this is handled.

Also 16 CAN (and other special) related variables can be used. They are specified:

LSB / MSB 00 01 10 11

00 CANID CAN ctrl byte DBI1 DB2

01 DB3 DB4 DB5 DB6

10 DB7 DBS Mess. no Mess. spec *
11 Timestamp Float 1 Float 2 Float 3

* Mess. spec: 32 bit value (mmmmmmmmrrrrrrrroo00000000000000) M=max. rxc; r=act. rxc;
o=overfl.

The SPECIAL commands: bits 1

and 2 of the command byte are 0:

command variable constant jump description

0 NA NA NA Not used

4 0 0 0 End of code; start of texts; after this line

8 text text text Text line; can be more than 6 bytes; ended bij CRLF
12 NA NA NA End of protocol file

16 user var NA line Set Float 1 to user variable

20 can var NA line Set Float 1 to CAN variable

24 can dbn NA line Set Float 1 to 4 CAN bytes, n first byte, little endian
28 can dbn NA line Set Float 1 to 4 CAN bytes, n first byte, big endian
32 user var NA line Set Float 2 to user variable

36 can var NA line Set Float 2 to CAN variable

40 can dbn NA line Set Float 2 to 4 CAN bytes, n first byte, little endian
44 can dbn NA line Set Float 2 to 4 CAN bytes, n first byte, big endian
48 user var NA line Set Float 3 to user variable

52 can var NA line Set Float 3 to CAN variable

56 can dbn NA line Set Float 3 to 4 CAN bytes, n first byte, little endian
60 can dbn NA line Set Float 3 to 4 CAN bytes, n first byte, big endian
64 user var NA line Set user variable to ASCII value of key

68 user var pin no line Set user variable to value of I/O pin

72 user var pin no line Set value of I/O pin to user variable

76 user var NA line Set script timer to user variable

80 user var NA line Set user variable to script timer

84 user var NA line Set user variable to event (1 for CANRX, 2 for timer, 3 for both)
88 * can var user var line Configure CAN FIFO 0 for Tx

92 can var user var line Configure CAN FIFO 1 for Tx

96 can var user var line Configure CAN FIFO 2 for Tx

100 can var user var line Configure CAN FIFO 3 for Tx

104 can var user var line Configure CAN FIFO 4 for Tx

108 can var user var line Configure CAN FIFO 5 for Tx

112 can var user var line Configure CAN FIFO 6 for Tx

116 can var user var line Configure CAN FIFO 7 for Tx

Special commands continued:

command variable constant jump description

120 can var user var line Configure CAN FIFO 8 for Tx
124 can var user var line Configure CAN FIFO 9 for Tx
128 can var user var line Configure CAN FIFO 10 for Tx
132 can var user var line Configure CAN FIFO 11 for Tx
136 can var user var line Configure CAN FIFO 12 for Tx
140 can var user var line Configure CAN FIFO 13 for Tx
144 can var user var line Configure CAN FIFO 14 for Tx
148 can var user var line Configure CAN FIFO 15 for Tx
152 can var user var line Configure CAN FIFO 16 for Tx
156 can var user var line Configure CAN FIFO 17 for Tx
160 can var user var line Configure CAN FIFO 18 for Tx
164 can var user var line Configure CAN FIFO 19 for Tx
168 can var user var line Configure CAN FIFO 20 for Tx
172 can var user var line Configure CAN FIFO 21 for Tx
176 can var user var line Configure CAN FIFO 22 for Tx
180 can var user var line Configure CAN FIFO 23 for Tx
184 can var user var line Configure CAN FIFO 24 for Tx
188 can var user var line Configure CAN FIFO 25 for Tx
192 can var user var line Configure CAN FIFO 26 for Tx
196 can var user var line Configure CAN FIFO 27 for Tx
200 can var user var line Configure CAN FIFO 28 for Tx
204 can var user var line Configure CAN FIFO 29 for Tx
208 can var user var line Configure CAN FIFO 30 for Tx
212 can var user var line Configure CAN FIFO 31 for Tx
216 fifo no NA line Send CAN FIFO no

220 - 248 NA NA NA 220-224-228-232-236-240-244-248 not used
252 0 ptr line Start of code; ptr to protocol text

* Only CAN ID, CT and D1 to D8 can be configured. User variables may have offsets of 0 to 31
times 256 to write in a specific buffer of the FIFO. In this way it is possible to fire up to 32
messages with one Send FIFO command. FIFO’s and CANSEND must be configured in the right
way.

The IF commands: command bit 0 is 0 and command bit 1 is 1

IF x COMP y is true THEN jump to specific line ELSE next line

Comparison:
Command bits 543 comp. description
000 = equal
001 < smaller than
010 > greater than
011 1= not equal
100 <= smaller or equal
101 >= greater or equal
110 NA not used
111 NA not used

Command bit 6 is 0: y = User var; command bit 6 is 1: y = CAN var; not relevant if bit § =0
Command bit 7 is 0: x = User var; command bit 7 is 1: x = CAN var

Command bit 8 is 0: y = Constant (value in constant bytes 3 and 4); Command bit 8 is 1: y is
variable.

Variable byte (bits 1-4): y value (all zero if command bit 8 is 0)
Variable byte (bits 5-8): x value

Constant: relevant value if command bit 8 is 0

Jump: the offset of the line no if condition is true.

The CALCULATION commands: command bit 1 is 0 and command bit 2 is 1

x=y CALCz
Calculation
Command bits 543 calc description
000 + add
001 - subtract
010 * multiply
011 / divide
100 & logic and
101 | logic or
110 << shift left (multiply by 2"z)
111 >> shift right (divide by 2"z)

Command bit 6: reserved for further calculations

Command bit 7 is 0: y = user variable; command bit 7 is 1: y = CAN variable

Command bit 8 is 0: z = constant; command bit 8 is 1: z = user variable (no in constant)
Variable byte bits 1-4: x value

Variable byte bits 5-8: y value

Constant bytes: constant value or user variable

Jump: If value other than 0 the offset for the next line

If the calculation is as follows: varl5=varY+varZ, where Y and Z can be any variable between 0

and 14 a new command is calculated with the new command (low byte Y), variable (high byte Y)
and constant bytes in varZ. Jump bytes are treated as before.

The WRITE commands: command bit 1 is 1 and command bit 2 is 1

WRITE characters
Kind of characters:

Command bits 543 | Description

000 text; constant has the offset value to the text
001 decimal value

010 hex value (no pre string)

011 hex value in format Oxvalue

100 binary value

101 float value

110 ASCII character

111

No of same ASCII characters; variable contains the number; constant the ASCII value

Command bit 6 and bit &: reserved

Command bit 7 is 0: value is user variable; bit 7 is 1: value is a CAN variable

Variable byte: the user or CAN variable (except if no of ASCII characters is chosen; see above)

Constant bytes: offset to the text (if text is chosen) or ASCII value (no of chr); otherwise not

relevant

Jump: If value other than 0 the offset for the next line

In version 1.4. of the firmware a basic variable has been added, CANEVENTINT. When this value
>0 the script timer is activated. The value is in ms. The script can now be activated by a received
message on the bus, but also based on a time interval. The command 84 is used to check which
event occured, 80 is used to write a new value into the timer and 76 to read the current value.

The following protocols are available as script:

CANopen
J1939
FMS

3.1 VALUES OF CANTEST IN THE COMMANDS WHERE IT IS USED

CANTEST should only be used by experienced CAN users. The 61154B.pdf (CAN reference
manual) of Microchip should be used for the details about the registers.

Command 00 01 10 11
CANSTATUS All kind of variables (total of 32)
00xx MSB sn Byte 2 +Byte 3 sn Port no. mode reg. (0-7)
01xx Timest. (on/off) Timest. resolution Bitrate (b/s) Sample point (%)
10xx SIW Samples FIFO start LSB FIFO start MSB
11xx Used FIFO’s Total FIFO’s Rx Err. cnt. Tx Err. cnt.
CANFIFO 0 < depth <33 type: rx=0; tx=1 act: rx enable 1/0 act: tx no of mess

stat status

ovf overflow stat

0x000-0x1FF

6 LSB’s depth +

0x40 * type +

0x100 * act +

0x4000 * stat +

0x8000 * ovf

CANMASK Two values / mask 1.11 MSB 2. 18LSB 999999: mide=1
0xx Mask 0 MSB Mask 0 LSB Mask 1 MSB Mask 1 LSB
Ixx Mask 2 MSB Mask 2 LSB Mask 3 MSB Mask 3 LSB
CANFILTER 2 values / filter 1. 11 MSB 2. 18LSB 999999: extid=1
0x000-0x3FF Filter n MSB Filter n LSB

CANLINK fifono (0-31) maskno (0-3) enable (0/1)

0x000-0x1FF

5 LSB’s fifono +

0x20 * maskno +

0x100 * enable

CANREG Two values / reg 1.16 LSB 2.16 MSB

0x000-0x3FF Regn LSB Reg n MSB

CANREG 2 (FREG) 2 bytes of FIFO in every value

0xx Timestamp sid + filthit dlctrtr+extid (Isb) extid+ide

1xx D1+ 0x100*¥D2 D3 + 0x100*¥D4 D5 + 0x100*¥D6 D7 + 0x100*D8
CANVIEW All kind of variables (total of 12)

00xx All parameters (*) Measurement time # Mess total Busload period **
01xx Busload total ** Busload max. ** Time busload max. # IDs period
10xx # IDs total Max. RxErrCnt period | Max. RxErrCnt total Total # errors
11xx Total # overloads Busload graphical (*) Errors graphical (*) All sequential (*)
CANOBIJECT Status of all 32 FIFO’s (See CANSTATUS)

(*) Reserved to be compatible with view format; set to 0.
(**) Busload in CANTEST is multiplied by 10 to get a resolution of 0.1% in an integer value.

3.2 Values of the <speed> parameter in CANOPEN

VALUE DESCRIPTION REGISTERS

0 Value is not changed

1-6 Bitrate test 1-2 during 1 sec/bitrate; 3-4 during 0.1 sec; 5-6 during 10 sec CANCFG for BTR
1,3,5 Testing predefined bitrates with display of the process * CANCON for:
2,4,6 As above without display; to be used within a Basic programm * - Listen Only

7 Testing all possible values ** -SIwW =4

8 Increment PRSEG CANCFG

9 Decrement PRSEG CANCFG

10 Increment TSEG1PH CANCFG

11 Decrement TSEG1PH CANCFG

12 Increment TSEG2PH CANCFG

13 Decrement TSEG2PH CANCFG

14 Increment BRP CANCFG

15 Decrement BRP CANCFG

16 Increment measuring point (inc PRSEG or TSEG1PH / dec TSEG2PH) CANCFG

17 Decrement measuring point (dec PRSEG or TSEG1PH / inc TSEG2PH) CANCFG

18 Toggle TSEG2PHTS on/off CANCFG

19 Set ABAT (reset all pending Tx) CANCON

20 Increment DeviceNet Filter CANCON

21 Decrement Devicenet Filter CANCON

22 Toggle SIDLE bit CANCON

23 Reserved for future use

24 Toggle CAN module ON/OFF CANCON

25 -1000 Set bitrate in kbits/sec CANCFG+CANCON
1001 - 24999 Illegal

25000 - 1000000 Set bitrate in bits/sec CANCFG+CANCON

> 1000000

Illegal

* Bitrates are defined by 4 ranges starting high and taking 50% of it for the next measurement:
1000/500/250/125/62.5, 800/400/200/100/50, 666.7/333.3/166.7/83.3/41.7, 600/300/150/75/37.5

** Bitrate is defined by 1000, decreased with 1% for every next measurement (time 0.1 sec).

